Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Aug;52(2):257–270. doi: 10.1016/S0006-3495(87)83213-7

Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy.

A G Palmer 3rd 1, N L Thompson 1
PMCID: PMC1330077  PMID: 3663831

Abstract

The use of high order autocorrelation in fluorescence correlation spectroscopy for investigating aggregation in a sample that contains fluorescent molecules is described. Theoretical expressions for the fluorescence fluctuation autocorrelation functions defined by gm,n(tau) = [(delta fm(t + tau)delta fm(t] - (delta Fm(t] (delta Fn(t]]/(F)m+n, where delta F(t) is the fluorescence fluctuation at time t, (F) is the average fluorescence, and m and n are integers less than or equal to 3, are derived. Methods for determining the number densities and relative fluorescence yields of aggregates of different sizes from a series of Gm,n(0) values are outlined. The method is applied to 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate suspended in solutions of water and ethyl alcohol. The technique presented may prove useful in detecting and characterizing aggregates of fluorescent-labeled biological molecules such as cell surface receptors.

Full text

PDF
257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerson BJ, Taylor TW, Clark NA. Characterization of the local structure of fluids by apertured cross-correlation functions. Phys Rev A Gen Phys. 1985 May;31(5):3183–3193. doi: 10.1103/physreva.31.3183. [DOI] [PubMed] [Google Scholar]
  2. Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976 Sep;16(9):1055–1069. doi: 10.1016/S0006-3495(76)85755-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borejdo J. Motion of myosin fragments during actin-activated ATPase: fluorescence correlation spectroscopy study. Biopolymers. 1979 Nov;18(11):2807–2820. doi: 10.1002/bip.1979.360181111. [DOI] [PubMed] [Google Scholar]
  5. Borejdo J., Putnam S., Morales M. F. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6346–6350. doi: 10.1073/pnas.76.12.6346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briggs J., Elings V. B., Nicoli D. F. Homogeneous fluorescent immunoassay. Science. 1981 Jun 12;212(4500):1266–1267. doi: 10.1126/science.7015511. [DOI] [PubMed] [Google Scholar]
  7. Cuatrecasas P. Developing concepts in receptor research. Drug Intell Clin Pharm. 1983 May;17(5):357–366. doi: 10.1177/106002808301700507. [DOI] [PubMed] [Google Scholar]
  8. Due C., Simonsen M., Olsson L. The major histocompatibility complex class I heavy chain as a structural subunit of the human cell membrane insulin receptor: implications for the range of biological functions of histocompatibility antigens. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6007–6011. doi: 10.1073/pnas.83.16.6007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fahey P. F., Koppel D. E., Barak L. S., Wolf D. E., Elson E. L., Webb W. W. Lateral diffusion in planar lipid bilayers. Science. 1977 Jan 21;195(4275):305–306. doi: 10.1126/science.831279. [DOI] [PubMed] [Google Scholar]
  10. Fahey P. F., Webb W. W. Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry. 1978 Jul 25;17(15):3046–3053. doi: 10.1021/bi00608a016. [DOI] [PubMed] [Google Scholar]
  11. Frieden C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu Rev Biophys Biophys Chem. 1985;14:189–210. doi: 10.1146/annurev.bb.14.060185.001201. [DOI] [PubMed] [Google Scholar]
  12. Gross D., Webb W. W. Molecular counting of low-density lipoprotein particles as individuals and small clusters on cell surfaces. Biophys J. 1986 Apr;49(4):901–911. doi: 10.1016/S0006-3495(86)83718-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirschfeld T., Block M. J., Mueller W. Virometer: an optical instrument for visual observation, measurement and classification of free viruses. J Histochem Cytochem. 1977 Jul;25(7):719–723. doi: 10.1177/25.7.70452. [DOI] [PubMed] [Google Scholar]
  14. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. I. Theory and FCS measurements. Biopolymers. 1983 Aug;22(8):1919–1948. doi: 10.1002/bip.360220808. [DOI] [PubMed] [Google Scholar]
  15. Icenogle R. D., Elson E. L. Fluorescence correlation spectroscopy and photobleaching recovery of multiple binding reactions. II. FPR and FCS measurements at low and high DNA concentrations. Biopolymers. 1983 Aug;22(8):1949–1966. doi: 10.1002/bip.360220809. [DOI] [PubMed] [Google Scholar]
  16. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lanni F., Taylor D. L., Ware B. R. Fluorescence photobleaching recovery in solutions of labeled actin. Biophys J. 1981 Aug;35(2):351–364. doi: 10.1016/S0006-3495(81)84794-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liebovitch L. S., Fischbarg J. Determining the kinetics of membrane pores from patch clamp data without measuring the open and closed times. Biochim Biophys Acta. 1985 Feb 28;813(1):132–136. doi: 10.1016/0005-2736(85)90353-0. [DOI] [PubMed] [Google Scholar]
  19. Liebovitch L. S., Fischbarg J. Membrane pores: a computer simulation of interacting pores analyzed by g1(tau) and g2(tau) correlation functions. J Theor Biol. 1986 Apr 7;119(3):287–297. doi: 10.1016/s0022-5193(86)80142-4. [DOI] [PubMed] [Google Scholar]
  20. Magde D., Elson E. L., Webb W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974 Jan;13(1):29–61. doi: 10.1002/bip.1974.360130103. [DOI] [PubMed] [Google Scholar]
  21. Metzger H. The IgE-mast cell system as a paradigm for the study of antibody mechanisms. Immunol Rev. 1978;41:186–199. doi: 10.1111/j.1600-065x.1978.tb01465.x. [DOI] [PubMed] [Google Scholar]
  22. Nicoli D. F., Briggs J., Elings V. B. Fluorescence immunoassay based on long time correlations of number fluctuations. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4904–4908. doi: 10.1073/pnas.77.8.4904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pastan I. H., Willingham M. C. Receptor-mediated endocytosis of hormones in cultured cells. Annu Rev Physiol. 1981;43:239–250. doi: 10.1146/annurev.ph.43.030181.001323. [DOI] [PubMed] [Google Scholar]
  24. Petersen N. O. Diffusion and aggregation in biological membranes. Can J Biochem Cell Biol. 1984 Nov;62(11):1158–1166. doi: 10.1139/o84-149. [DOI] [PubMed] [Google Scholar]
  25. Petersen N. O., Johnson D. C., Schlesinger M. J. Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J. 1986 Apr;49(4):817–820. doi: 10.1016/S0006-3495(86)83710-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Petersen N. O. Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J. 1986 Apr;49(4):809–815. doi: 10.1016/S0006-3495(86)83709-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roos D. S., Robinson J. M., Davidson R. L. Cell fusion and intramembrane particle distribution in polyethylene glycol-resistant cells. J Cell Biol. 1983 Sep;97(3):909–917. doi: 10.1083/jcb.97.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Salmon E. D., Saxton W. M., Leslie R. J., Karow M. L., McIntosh J. R. Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching. J Cell Biol. 1984 Dec;99(6):2157–2164. doi: 10.1083/jcb.99.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schreiber A. B., Hoebeke J., Vray B., Strosberg A. D. Evidence for reversible microclustering of lentil lectin membrane receptors on HeLa cells. FEBS Lett. 1980 Mar 10;111(2):303–306. doi: 10.1016/0014-5793(80)80815-5. [DOI] [PubMed] [Google Scholar]
  31. Shotton D., Thompson K., Wofsy L., Branton D. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study. J Cell Biol. 1978 Feb;76(2):512–531. doi: 10.1083/jcb.76.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sorscher S. M., Bartholomew J. C., Klein M. P. The use of fluorescence correlations spectroscopy to probe chromatin in the cell nucleus. Biochim Biophys Acta. 1980 Nov 14;610(1):28–46. doi: 10.1016/0005-2787(80)90053-2. [DOI] [PubMed] [Google Scholar]
  33. Steinberg I. Z. On the time reversal of noise signals. Biophys J. 1986 Jul;50(1):171–179. doi: 10.1016/S0006-3495(86)83449-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thompson N. L., Axelrod D. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J. 1983 Jul;43(1):103–114. doi: 10.1016/S0006-3495(83)84328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Uster P. S., Pagano R. E. Resonance energy transfer microscopy: observations of membrane-bound fluorescent probes in model membranes and in living cells. J Cell Biol. 1986 Oct;103(4):1221–1234. doi: 10.1083/jcb.103.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
  37. Wahl P. Optimization of laser beams in FRAP experiments of microscopical objects. Biophys Chem. 1985 Oct;22(4):317–322. doi: 10.1016/0301-4622(85)80055-7. [DOI] [PubMed] [Google Scholar]
  38. Watts T. H., Gaub H. E., McConnell H. M. T-cell-mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. Nature. 1986 Mar 13;320(6058):179–181. doi: 10.1038/320179a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES