Abstract
Dark-adapted halorhodopsin is a mixture of 13-cis and all-trans retinal chromophoric species. It is known that illumination with blue light increases the all-trans content, and this is reversed partially by brief red illumination. We now find that extended red-light illumination produces a third spectroscopic form. Analysis of composite absorption spectra recorded during various illumination regimes yielded the spectrum for the new species, whose absorption is shifted approximately 100 nm to the blue. The isomeric composition of retinal extracted from the illuminated pigment indicates that this form contains 9-cis retinal. This species, which we name iso-halorhodopsin, is stable in the dark at room temperature for at least a day, but can be quantitatively reconverted into a mixture of all-trans and 13-cis halorhodopsin by blue-light illumination. A kinetic scheme for the isomeric interconversions was drawn up, where iso-halorhodopsin is produced from either all-trans halorhodopsin only, or both 13-cis and all-trans forms. This kind of scheme is supported by the finding that red illumination of halo-opsin reconstituted with 13-trans-locked retinal will generate iso-halorhodopsin. A similar experiment with 13-cis-locked retinal could not be done because reconstitution with this retinal analogue was not possible. The photoreaction that leads to iso-halorhodopsin can be readily demonstrated in detergent-solubilized halorhodopsin or in halorhodopsin in liposomes made from phosphatidylcholine plus phosphatidyl-ethanolamine, but only to much reduced extent in cell envelope vesicles and in halorhodopsin incorporated into liposomes made from halobacterial polar lipids.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Kagawa Y. Incorporation of purple membrane into vesicles capable of light-stimulated ATP synthesis. Methods Enzymol. 1979;55:777–780. doi: 10.1016/0076-6879(79)55085-x. [DOI] [PubMed] [Google Scholar]
- Kates M. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids. 1978;15(4):301–342. doi: 10.1016/0079-6832(77)90011-8. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem. 1986;15:11–28. doi: 10.1146/annurev.bb.15.060186.000303. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Light-dependent trans to cis isomerization of the retinal in halorhodopsin. FEBS Lett. 1984 Oct 1;175(2):337–342. doi: 10.1016/0014-5793(84)80764-4. [DOI] [PubMed] [Google Scholar]
- Lanyi J. K. Photochromism of halorhodopsin. cis/trans isomerization of the retinal around the 13-14 double bond. J Biol Chem. 1986 Oct 25;261(30):14025–14030. [PubMed] [Google Scholar]
- Lanyi J. K., Vodyanoy V. Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry. 1986;25(6):1465–1470. doi: 10.1021/bi00354a042. [DOI] [PubMed] [Google Scholar]
- Maeda A., Iwasa T., Yoshizawa T. Formation of 9-cis- and 11-cis-retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid. Biochemistry. 1980 Aug 5;19(16):3825–3831. doi: 10.1021/bi00557a027. [DOI] [PubMed] [Google Scholar]
- Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
- Smith S. O., Marvin M. J., Bogomolni R. A., Mathies R. A. Structure of the retinal chromophore in the hR578 form of halorhodopsin. J Biol Chem. 1984 Oct 25;259(20):12326–12329. [PubMed] [Google Scholar]
- Sperling W., Carl P., Rafferty Ch, Dencher N. A. Photochemistry and dark equilibrium of retinal isomers and bacteriorhodopsin isomers. Biophys Struct Mech. 1977 Jun 29;3(2):79–94. doi: 10.1007/BF00535798. [DOI] [PubMed] [Google Scholar]
- Spudich J. L., Bogomolni R. A. Spectroscopic discrimination of the three rhodopsinlike pigments in Halobacterium halobium membranes. Biophys J. 1983 Aug;43(2):243–246. doi: 10.1016/S0006-3495(83)84345-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steiner M., Oesterhelt D., Ariki M., Lanyi J. K. Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem. 1984 Feb 25;259(4):2179–2184. [PubMed] [Google Scholar]
- Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Fujita Y., Noda Y., Miyata S. A simple procedure for the extraction of the native chromophore of visual pigments: the formaldehyde method. Vision Res. 1986;26(3):425–429. doi: 10.1016/0042-6989(86)90185-9. [DOI] [PubMed] [Google Scholar]
- YOSHIZAWA T., WALD G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature. 1963 Mar 30;197:1279–1286. doi: 10.1038/1971279a0. [DOI] [PubMed] [Google Scholar]