Abstract
The long-lived fusogenic state induced in spherical-shaped erythrocyte ghosts by electric field pulses (Sowers, A.E. 1984. J. Cell Biol. 99:1989-1996; Sowers, A.E. 1986. J. Cell Biol. 102:1358-1362) was studied in terms of how the fusion yield depended on both (a) the location where membrane-membrane contact took place with respect to the orientation of the electric pulse and (b) the time interval between the pulse treatment and membrane-membrane contact. Fusion yields were greater for membrane-membrane contact locations closer to where the pulse-induced transmembrane voltage was expected to be greatest and showed a time interval-dependent accelerating decay. The portion of the membrane that became fusogenic included the area up to a latitude of approximately 38 degrees of arc towards the equators of the membranes. A time interval-dependent increase or decrease in rate of decay in the fusion yield for membrane-membrane contacts induced closer to the equator of the membranes did not occur showing that the pulse-induced fusogenic state is immobile in the early 5-45-s interval after induction and has a rate of decay, which does not permit long time interval changes in lateral position to be measured.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
- Dimitrov D. S., Jain R. K. Membrane stability. Biochim Biophys Acta. 1984 Dec 4;779(4):437–468. doi: 10.1016/0304-4157(84)90020-0. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters R., Cherry R. J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4317–4321. doi: 10.1073/pnas.79.14.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep. 1981 Aug;5(8):733–760. doi: 10.1016/0309-1651(81)90231-9. [DOI] [PubMed] [Google Scholar]
- Pilwat G., Richter H. P., Zimmermann U. Giant culture cells by electric field-induced fusion. FEBS Lett. 1981 Oct 12;133(1):169–174. doi: 10.1016/0014-5793(81)80497-8. [DOI] [PubMed] [Google Scholar]
- Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E. A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J Cell Biol. 1986 Apr;102(4):1358–1362. doi: 10.1083/jcb.102.4.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E. Characterization of electric field-induced fusion in erythrocyte ghost membranes. J Cell Biol. 1984 Dec;99(6):1989–1996. doi: 10.1083/jcb.99.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E. Fusion of mitochondrial inner membranes by electric fields produces inside-out vesicles. Visualization by freeze-fracture electron microscopy. Biochim Biophys Acta. 1983 Nov 23;735(3):426–428. doi: 10.1016/0005-2736(83)90157-8. [DOI] [PubMed] [Google Scholar]
- Sowers A. E., Lieber M. R. Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts. FEBS Lett. 1986 Sep 15;205(2):179–184. doi: 10.1016/0014-5793(86)80893-6. [DOI] [PubMed] [Google Scholar]
- Sowers A. E. Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion. Biophys J. 1985 Apr;47(4):519–525. doi: 10.1016/S0006-3495(85)83946-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenger D. A., Hui S. W. Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes. J Membr Biol. 1986;93(1):43–53. doi: 10.1007/BF01871017. [DOI] [PubMed] [Google Scholar]
- Teissie J., Rols M. P. Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun. 1986 Oct 15;140(1):258–266. doi: 10.1016/0006-291x(86)91084-3. [DOI] [PubMed] [Google Scholar]
- Teissie J., Tsong T. Y. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry. 1981 Mar 17;20(6):1548–1554. doi: 10.1021/bi00509a022. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Voltage modulation of membrane permeability and energy utilization in cells. Biosci Rep. 1983 Jun;3(6):487–505. doi: 10.1007/BF01120693. [DOI] [PubMed] [Google Scholar]
- Turnbull R. J. Letter: An alternate explanation for the permeability changes induced by electrical impulses in vesicular membranes. J Membr Biol. 1973 Dec 31;14(2):193–196. doi: 10.1007/BF01868077. [DOI] [PubMed] [Google Scholar]
- Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta. 1982 Nov 30;694(3):227–277. doi: 10.1016/0304-4157(82)90007-7. [DOI] [PubMed] [Google Scholar]
- Zimmermann U., Vienken J., Halfmann J., Emeis C. C. Electrofusion: a novel hybridization technique. Adv Biotechnol Processes. 1985;4:79–150. [PubMed] [Google Scholar]
