Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Dec;52(6):1031–1038. doi: 10.1016/S0006-3495(87)83296-4

The effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. An electron-electron double resonance (ELDOR) study.

J J Yin 1, J B Feix 1, J S Hyde 1
PMCID: PMC1330102  PMID: 2827800

Abstract

Electron-electron double resonance (ELDOR) and saturation-recovery spectroscopy employing 14N:15N stearic acid spin-label pairs have been used to study the effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. The 14N:15N continuous wave electron-electron double resonance (CW ELDOR) theory has been developed using rate equations based on the relaxation model. The collision frequency between 14N-16 doxyl stearate and 15N-16 doxyl stearate, WHex (16:16), is indicative of lateral diffusion of the spin probes, while the collision frequency between 14N-16 doxyl stearate and 15N-5 doxyl stearate, WHex (16:5), provides information on vertical fluctuations of the 14N-16 doxyl stearate spin probe toward the membrane surface. Our results show that: (a) cholesterol decreases the electron spin-lattice relaxation time Tle of 14N-16 doxyl stearate spin label in dimyristoylphosphatidylcholine (DMPC) and egg yolk phosphatidylcholine (egg PC). (b) Cholesterol increases the biomolecular collision frequency WHex (16:16) and decreases WHex (16:5), suggesting that incorporation of cholesterol significantly orders the part of the bilayer that it occupies and disorders the interior region of the bilayer. (c) Alkyl chain unsaturation of the host lipid moderates the effect of cholesterol on both vertical fluctuations and lateral diffusion of 14N-16 doxyl stearate. And (d), there are marked differences in the effects of cholesterol on lateral diffusion and vertical fluctuations between 0-30 mol% and 30-50 mol% of cholesterol that suggest an inhomogeneous distribution of cholesterol in the membrane.

Full text

PDF
1031

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alecio M. R., Golan D. E., Veatch W. R., Rando R. R. Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5171–5174. doi: 10.1073/pnas.79.17.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dahl C. E. Effect of sterol structure on acyl chain ordering in phosphatidylcholine vesicles: a deuterium nuclear magnetic resonance and electron spin resonance study. Biochemistry. 1981 Dec 8;20(25):7158–7161. doi: 10.1021/bi00528a016. [DOI] [PubMed] [Google Scholar]
  3. Devaux P., McConnell H. M. Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J Am Chem Soc. 1972 Jun 28;94(13):4475–4481. doi: 10.1021/ja00768a600. [DOI] [PubMed] [Google Scholar]
  4. Feix J. B., Popp C. A., Venkataramu S. D., Beth A. H., Park J. H., Hyde J. S. An electron-electron double-resonance study of interactions between [14N]- and [15N]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochemistry. 1984 May 8;23(10):2293–2299. doi: 10.1021/bi00305a032. [DOI] [PubMed] [Google Scholar]
  5. Feix J. B., Yin J. J., Hyde J. S. Interactions of 14N:15N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation. Biochemistry. 1987 Jun 30;26(13):3850–3855. doi: 10.1021/bi00387a017. [DOI] [PubMed] [Google Scholar]
  6. Guyer W., Bloch K. Phosphatidylcholine and cholesterol interactions in model membranes. Chem Phys Lipids. 1983 Nov;33(4):313–322. doi: 10.1016/0009-3084(83)90025-7. [DOI] [PubMed] [Google Scholar]
  7. Hemminga M. A. An ESR Study of the mobility of the cholestane spin label in oriented lecithin-cholesterol multibilayers. Chem Phys Lipids. 1975 Apr;14(2):141–150. doi: 10.1016/0009-3084(75)90056-0. [DOI] [PubMed] [Google Scholar]
  8. Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
  9. Kuo A. L., Wade C. G. Lipid lateral diffusion by pulsed nuclear magnetic resonance. Biochemistry. 1979 May 29;18(11):2300–2308. doi: 10.1021/bi00578a026. [DOI] [PubMed] [Google Scholar]
  10. Kusumi A., Subczynski W. K., Pasenkiewicz-Gierula M., Hyde J. S., Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophys Acta. 1986 Jan 29;854(2):307–317. doi: 10.1016/0005-2736(86)90124-0. [DOI] [PubMed] [Google Scholar]
  11. Kutchai H., Chandler L. H., Zavoico G. B. Effects of cholesterol on acyl chain dynamics in multilamellar vesicles of various phosphatidylcholines. Biochim Biophys Acta. 1983 Dec 21;736(2):137–149. doi: 10.1016/0005-2736(83)90277-8. [DOI] [PubMed] [Google Scholar]
  12. Lai C. S., Wirt M. D., Yin J. J., Froncisz W., Feix J. B., Kunicki T. J., Hyde J. S. Lateral diffusion of lipid probes in the surface membrane of human platelets. An electron-electron double resonance (ELDOR) study. Biophys J. 1986 Sep;50(3):503–506. doi: 10.1016/S0006-3495(86)83487-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lentz B. R., Barrow D. A., Hoechli M. Cholesterol-phosphatidylcholine interactions in multilamellar vesicles. Biochemistry. 1980 Apr 29;19(9):1943–1954. doi: 10.1021/bi00550a034. [DOI] [PubMed] [Google Scholar]
  14. Lindblom G., Johansson L. B., Arvidson G. Effect of cholesterol in membranes. Pulsed nuclear magnetic resonance measurements of lipid lateral diffusion. Biochemistry. 1981 Apr 14;20(8):2204–2207. doi: 10.1021/bi00511a020. [DOI] [PubMed] [Google Scholar]
  15. Popp C. A., Hyde J. S. Electron-electron double resonance and saturation-recovery studies of nitroxide electron and nuclear spin-lattice relaxation times and Heisenberg exchange rates: lateral diffusion in dimyristoyl phosphatidylcholine. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2559–2563. doi: 10.1073/pnas.79.8.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Presti F. T., Pace R. J., Chan S. I. Cholesterol-phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains. Biochemistry. 1982 Aug 3;21(16):3831–3835. doi: 10.1021/bi00259a017. [DOI] [PubMed] [Google Scholar]
  17. Quinn P. J. The fluidity of cell membranes and its regulation. Prog Biophys Mol Biol. 1981;38(1):1–104. doi: 10.1016/0079-6107(81)90011-0. [DOI] [PubMed] [Google Scholar]
  18. Recktenwald D. J., McConnell H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1981 Jul 21;20(15):4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
  19. Rubenstein J. L., Smith B. A., McConnell H. M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci U S A. 1979 Jan;76(1):15–18. doi: 10.1073/pnas.76.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schreier-Muccillo S., Marsh D., Dugas H., Schneider H., Smith C. P. A spin probe study of the influence of cholesterol on motion and orientation of phospholipids in oriented multibilayers and vesicles. Chem Phys Lipids. 1973 Jan;10(1):11–27. doi: 10.1016/0009-3084(73)90037-6. [DOI] [PubMed] [Google Scholar]
  21. Taylor M. G., Smith I. C. The fidelity of response by nitroxide spin probes to changes in membrane organization: the condensing effect of cholesterol. Biochim Biophys Acta. 1980 Jun 20;599(1):140–149. doi: 10.1016/0005-2736(80)90063-2. [DOI] [PubMed] [Google Scholar]
  22. Yin J. J., Pasenkiewicz-Gierula M., Hyde J. S. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc Natl Acad Sci U S A. 1987 Feb;84(4):964–968. doi: 10.1073/pnas.84.4.964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES