Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Jan;53(1):25–32. doi: 10.1016/S0006-3495(88)83062-5

Use of weak acids to determine the bulk diffusion limitation of H+ ion conductance through the gramicidin channel.

E R Decker 1, D G Levitt 1
PMCID: PMC1330118  PMID: 2449253

Abstract

The addition of 2 M formic acid at pH 3.75 increased the single channel H+ ion conductance of gramicidin channels 12-fold at 200 mV. Other weak acids (acetic, lactic, oxalic) produce a similar, but smaller increase. Formic acid (and other weak acids) also blocks the K+ conductance at pH 3.75, but not at pH 6.0 when the anion form predominates. This increased H+ conductance and K+ block can be explained by formic acid (HF) binding to the mouth of the gramicidin channel (Km = 1 M) and providing a source of H+ ions. A kinetic model is derived, based on the equilibrium binding of formic acid to the channel mouth, that quantitatively predicts the conductance for different mixtures of H+, K+, and formic acid. The binding of the neutral formic acid to the mouth of the gramicidin channel is directly supported by the observation that a neutral molecule with a similar structure, formamide (and malonamide and acrylamide), blocks the K+ conductance at pH 6.0. The H+ conductance in the presence of formic acid provides a lower bound for the intrinsic conductance of the gramicidin channel when there is no diffusion limitation at the channel mouth. The 12-fold increase in conductance produced by formic acid suggests that greater than 90% of the total resistance to H+ results from diffusion limitation in the bulk solution.

Full text

PDF
25

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements. Biophys J. 1983 Feb;41(2):135–146. doi: 10.1016/S0006-3495(83)84415-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  5. Busath D., Szabo G. Gramicidin forms multi-state rectifying channels. Nature. 1981 Nov 26;294(5839):371–373. doi: 10.1038/294371a0. [DOI] [PubMed] [Google Scholar]
  6. Decker E. R., Levitt D. G. Comparison of the gramicidin A potassium/sodium permeability and single channel conductance ratio. Biochim Biophys Acta. 1983 Apr 21;730(1):178–180. doi: 10.1016/0005-2736(83)90330-9. [DOI] [PubMed] [Google Scholar]
  7. Eisenman G., Enos B., Hägglund J., Sandblom J. Gramicidin as an example of a single-filing ionic channel. Ann N Y Acad Sci. 1980;339:8–20. doi: 10.1111/j.1749-6632.1980.tb15964.x. [DOI] [PubMed] [Google Scholar]
  8. Hainsworth A. H., Hladky S. B. Gramicidin-mediated currents at very low permeant ion concentrations. Biophys J. 1987 Jul;52(1):109–113. doi: 10.1016/S0006-3495(87)83194-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
  10. Jordan P. C. Electrostatic modeling of ion pores. Energy barriers and electric field profiles. Biophys J. 1982 Aug;39(2):157–164. doi: 10.1016/S0006-3495(82)84503-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  12. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  13. Walter A., Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–264. doi: 10.1007/BF01870573. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES