Abstract
A technique for investigating the gramicidin-facilitated transport of Na+ ions across lipid bilayers of large unilamellar vesicles under the condition of ionic equilibrium has been developed using a combination of heat incubation of the gramicidin with the vesicles and 23Na-nuclear magnetic resonance (NMR) spectroscopy. Isolation of the two 23Na-NMR signals from the intra- and extravesicular Na+ with the shift reagent, dysprosium (III) tripolyphosphate, allows the equilibrium flux of Na+ through the gramicidin channels to be detected and treated as a two-site exchange process. This study indicates that the transport of Na+ through gramicidin channels is second order with respect to the gramicidin concentration.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alger J. R., Shulman R. G. NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer. Q Rev Biophys. 1984 Feb;17(1):83–124. doi: 10.1017/s0033583500005266. [DOI] [PubMed] [Google Scholar]
- Andersen O. S. Gramicidin channels. Annu Rev Physiol. 1984;46:531–548. doi: 10.1146/annurev.ph.46.030184.002531. [DOI] [PubMed] [Google Scholar]
- Balschi J. A., Cirillo V. P., Springer C. S., Jr Direct high-resolution nuclear magnetic resonance studies of cation transport in vivo, Na+ transport in yeast cells. Biophys J. 1982 Jun;38(3):323–326. doi: 10.1016/S0006-3495(82)84566-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bamberg E., Apell H. J., Alpes H. Structure of the gramicidin A channel: discrimination between the piL,D and the beta helix by electrical measurements with lipid bilayer membranes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2402–2406. doi: 10.1073/pnas.74.6.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boulanger Y., Vinay P., Desroches M. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance. Biophys J. 1985 Apr;47(4):553–561. doi: 10.1016/S0006-3495(85)83950-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Etchebest C., Pullman A. The effect of the amino-acid side chains on the energy profiles for ion transport in the gramicidin A channel. J Biomol Struct Dyn. 1985 Feb;2(5):859–870. doi: 10.1080/07391102.1985.10507605. [DOI] [PubMed] [Google Scholar]
- Finkelstein A., Andersen O. S. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol. 1981 Apr 30;59(3):155–171. doi: 10.1007/BF01875422. [DOI] [PubMed] [Google Scholar]
- Hinton J. F., Koeppe R. E., 2nd, Shungu D., Whaley W. L., Paczkowski J. A., Millett F. S. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy. Biophys J. 1986 Feb;49(2):571–577. doi: 10.1016/S0006-3495(86)83668-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones D., Hayon E., Busath D. Tryptophan photolysis is responsible for gramicidin-channel inactivation by ultraviolet light. Biochim Biophys Acta. 1986 Sep 25;861(1):62–66. doi: 10.1016/0005-2736(86)90371-8. [DOI] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Hodgson K. O., Stryer L. Helical channels in crystals of gramicidin A and of a cesium--gramicidin A complex: an x-ray diffraction study. J Mol Biol. 1978 May 5;121(1):41–54. doi: 10.1016/0022-2836(78)90261-9. [DOI] [PubMed] [Google Scholar]
- Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
- Ogino T., den Hollander J. A., Shulman R. G. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5185–5189. doi: 10.1073/pnas.80.17.5185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike M. M., Simon S. R., Balschi J. A., Springer C. S., Jr High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na. Proc Natl Acad Sci U S A. 1982 Feb;79(3):810–814. doi: 10.1073/pnas.79.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddell F. G., Hayer M. K. The monensin-mediated transport of sodium ions through phospholipid bilayers studied by 23Na-NMR spectroscopy. Biochim Biophys Acta. 1985 Jul 25;817(2):313–317. doi: 10.1016/0005-2736(85)90033-1. [DOI] [PubMed] [Google Scholar]
- Shungu D. C., Hinton J. F., Koeppe R. E., 2nd, Millett F. S. Investigation of the interaction between thallous ions and gramicidin A in dimyristoylphosphatidylcholine vesicles: a thallium-205 NMR equilibrium study. Biochemistry. 1986 Oct 7;25(20):6103–6108. doi: 10.1021/bi00368a040. [DOI] [PubMed] [Google Scholar]
- Szabo G., Urry D. W. N-acetyl gramicidin: single-channel properties and implications for channel structure. Science. 1979 Jan 5;203(4375):55–57. doi: 10.1126/science.83000. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szoka F., Olson F., Heath T., Vail W., Mayhew E., Papahadjopoulos D. Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta. 1980 Oct 2;601(3):559–571. doi: 10.1016/0005-2736(80)90558-1. [DOI] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Spisni A., Khaled A. Characterization of micellar-packaged gramicidin A channels. Biochem Biophys Res Commun. 1979 Jun 13;88(3):940–949. doi: 10.1016/0006-291x(79)91499-2. [DOI] [PubMed] [Google Scholar]
- Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein S., Wallace B. A., Blout E. R., Morrow J. S., Veatch W. Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4230–4234. doi: 10.1073/pnas.76.9.4230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein S., Wallace B. A., Morrow J. S., Veatch W. R. Conformation of the gramicidin A transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles. J Mol Biol. 1980 Oct 15;143(1):1–19. doi: 10.1016/0022-2836(80)90121-7. [DOI] [PubMed] [Google Scholar]
