Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Feb;53(2):185–191. doi: 10.1016/S0006-3495(88)83080-7

Chromophore/protein and chromophore/anion interactions in halorhodopsin.

J K Lanyi 1, L Zimányi 1, K Nakanishi 1, F Derguini 1, M Okabe 1, B Honig 1
PMCID: PMC1330139  PMID: 3345330

Abstract

Halorhodopsin (HR), the light-driven chloride transport pigment of Halobacterium halobium, was bleached and reconstituted with retinal analogues with the pi electron system interrupted at different locations (dihydroretinals). The absorption maxima of the artificial pigments formed with the dihydroretinals are found to be very similar to those of the corresponding pigments formed by reconstitution of bacteriorhodopsin (BR) and sensory rhodopsin (SR). This strongly suggests that the distribution of charges around the retinal is similar in all three bacterial rhodopsins. Comparison of the primary, and proposed secondary, structures for HR and BR reveal conserved asparagine (asp) and arginine (arg) residues, which are likely candidates for the ionizable amino acids that interact with the retinal. In a second set of experiments absorption shifts due to the binding of anions to Sites I and II in HR, reconstituted with different retinal analogues, were used to estimate the locations of these binding sites relative to the retinal. Site I is localized near the Schiff base, and Site II near the ionone ring. On the basis of these results a structural model for HR is proposed, which accounts for the spectroscopic properties of HR in terms of the three buried arg residues and two of the buried asp residues in the protein.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariki M., Schobert B., Lanyi J. K. Effects of arginine modification on the photocycle of halorhodopsin. Arch Biochem Biophys. 1986 Aug 1;248(2):532–539. doi: 10.1016/0003-9861(86)90506-0. [DOI] [PubMed] [Google Scholar]
  2. Aton B., Doukas A. G., Narva D., Callender R. H., Dinur U., Honig B. Resonance Raman studies of the primary photochemical event in visual pigments. Biophys J. 1980 Jan;29(1):79–94. doi: 10.1016/S0006-3495(80)85119-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baasov T., Friedman N., Sheves M. Factors affecting the C = N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments. Biochemistry. 1987 Jun 2;26(11):3210–3217. doi: 10.1021/bi00385a041. [DOI] [PubMed] [Google Scholar]
  4. Bogomolni R. A., Spudich J. L. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6250–6254. doi: 10.1073/pnas.79.20.6250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bogomolni R. A., Taylor M. E., Stoeckenius W. Reconstitution of purified halorhodopsin. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5408–5411. doi: 10.1073/pnas.81.17.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Engelman D. M., Henderson R., McLachlan A. D., Wallace B. A. Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023–2027. doi: 10.1073/pnas.77.4.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  8. Harbison G. S., Herzfeld J., Griffin R. G. Solid-state nitrogen-15 nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin. Biochemistry. 1983 Jan 4;22(1):1–4. doi: 10.1021/bi00270a600. [DOI] [PubMed] [Google Scholar]
  9. Harbison G. S., Smith S. O., Pardoen J. A., Courtin J. M., Lugtenburg J., Herzfeld J., Mathies R. A., Griffin R. G. Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry. 1985 Nov 19;24(24):6955–6962. doi: 10.1021/bi00345a031. [DOI] [PubMed] [Google Scholar]
  10. Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
  11. Honig B. H., Hubbell W. L. Stability of "salt bridges" in membrane proteins. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5412–5416. doi: 10.1073/pnas.81.17.5412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kakitani H., Kakitani T., Rodman H., Honig B. On the mechanism of wavelength regulation in visual pigments. Photochem Photobiol. 1985 Apr;41(4):471–479. doi: 10.1111/j.1751-1097.1985.tb03514.x. [DOI] [PubMed] [Google Scholar]
  13. Lanyi J. K. Photochromism of halorhodopsin. cis/trans isomerization of the retinal around the 13-14 double bond. J Biol Chem. 1986 Oct 25;261(30):14025–14030. [PubMed] [Google Scholar]
  14. Lanyi J. K., Weber H. J. Spectrophotometric identification of the pigment associated with light-driven primary sodium translocation in Halobacterium halobium. J Biol Chem. 1980 Jan 10;255(1):243–250. [PubMed] [Google Scholar]
  15. Olivé J. L., Mousseron-Canet M. Photydation sensibilisée dans la série de la vitamine A2. Bull Soc Chim Fr. 1969 Sep;9:3252–3257. [PubMed] [Google Scholar]
  16. Schobert B., Lanyi J. K., Cragoe E. J., Jr Evidence for a halide-binding site in halorhodopsin. J Biol Chem. 1983 Dec 25;258(24):15158–15164. [PubMed] [Google Scholar]
  17. Schobert B., Lanyi J. K. Electrostatic interaction between anions bound to site I and the retinal Schiff base of halorhodopsin. Biochemistry. 1986 Jul 15;25(14):4163–4167. doi: 10.1021/bi00362a026. [DOI] [PubMed] [Google Scholar]
  18. Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
  19. Schobert B., Lanyi J. K., Oesterhelt D. Effects of anion binding on the deprotonation reactions of halorhodopsin. J Biol Chem. 1986 Feb 25;261(6):2690–2696. [PubMed] [Google Scholar]
  20. Seiff F., Wallat I., Ermann P., Heyn M. P. A neutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 May;82(10):3227–3231. doi: 10.1073/pnas.82.10.3227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seiff F., Wallat I., Westerhausen J., Heyn M. P. Location of chemically modified lysine 41 in the structure of bacteriorhodopsin by neutron diffraction. Biophys J. 1986 Oct;50(4):629–635. doi: 10.1016/S0006-3495(86)83502-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith S. O., Marvin M. J., Bogomolni R. A., Mathies R. A. Structure of the retinal chromophore in the hR578 form of halorhodopsin. J Biol Chem. 1984 Oct 25;259(20):12326–12329. [PubMed] [Google Scholar]
  23. Spudich J. L., McCain D. A., Nakanishi K., Okabe M., Shimizu N., Rodman H., Honig B., Bogomolni R. A. Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys J. 1986 Feb;49(2):479–483. doi: 10.1016/S0006-3495(86)83657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steiner M., Oesterhelt D., Ariki M., Lanyi J. K. Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. J Biol Chem. 1984 Feb 25;259(4):2179–2184. [PubMed] [Google Scholar]
  25. Surmatis J. D., Thommen R. A total synthesis of astaxanthin dimethyl ether. J Org Chem. 1967 Jan;32(1):180–184. doi: 10.1021/jo01277a044. [DOI] [PubMed] [Google Scholar]
  26. Zimányi L., Lanyi J. K. Iso-halorhodopsin: a stable, 9-cis retinal containing photoproduct of halorhodopsin. Biophys J. 1987 Dec;52(6):1007–1013. doi: 10.1016/S0006-3495(87)83293-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES