Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Feb;53(2):193–203. doi: 10.1016/S0006-3495(88)83081-9

Ionophore properties of a synthetic alpha-helical transmembrane fragment of the mitochondrial H+ ATP synthetase of Saccharomyces cerevisiae. Comparison with alamethicin.

G Molle 1, J Y Dugast 1, H Duclohier 1, P Daumas 1, F Heitz 1, G Spach 1
PMCID: PMC1330140  PMID: 2449918

Abstract

A 22-amino acid polypeptide was synthesized to model the central transmembrane segment of subunit 8 of the H+ ATP synthetase of Saccharomyces cerevisiae and to test ionophore properties. Solid-phase synthesis was conducted on benzhydrilamino resin, and purification followed by high pressure liquid chromatography allowed the isolation of the pure product whose NH2 terminal was acetylated and whose molecular weight determined by Fast Atomic Bombardment was the expected 2,666. The infrared spectrum of this peptide in the solid state reveals a fully alpha-helical conformation, whereas in low dielectric constant solvents the alpha-helical content is 60%, as determined by circular dichroism studies. Macroscopic current-voltage curves displayed by different planar lipid bilayers (monomyristoleoyl-glycerol and phosphatidylethanolamine) doped with this peptide suggest a weakly voltage-dependent conductance. Only one conductance level is observed in any given single-channel conductance experiment. However, a series of experiments shows a distribution of conductance states, most often 440 or 3,000 pS, and occasionally 80, 1,200, or 6,500 pS. This behavior contrasts with the usual behavior of alamethicin, chosen as a model of "aggregating-helices" ionophore and whose conductance fluctuates continually between substates, through uptake and release of monomers. Nevertheless, alamethicin too can display, under certain conditions, long-lived and mono-level conductance states similar to those reported here for the newly synthesized peptide. These properties could possibly be explained by the formation of large domains of helical rods with a set of allowed and independent ionic pathways.

Full text

PDF
193

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann G., Mueller P. A molecular model of membrane excitability. J Supramol Struct. 1974;2(5-6):538–557. doi: 10.1002/jss.400020504. [DOI] [PubMed] [Google Scholar]
  2. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277–303. doi: 10.1007/BF01869983. [DOI] [PubMed] [Google Scholar]
  3. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  5. Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
  6. Greenblatt R. E., Blatt Y., Montal M. The structure of the voltage-sensitive sodium channel. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure. FEBS Lett. 1985 Dec 2;193(2):125–134. doi: 10.1016/0014-5793(85)80136-8. [DOI] [PubMed] [Google Scholar]
  7. Hall J. E., Vodyanoy I., Balasubramanian T. M., Marshall G. R. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. doi: 10.1016/S0006-3495(84)84151-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanke W., Boheim G. The lowest conductance state of the alamethicin pore. Biochim Biophys Acta. 1980 Mar 13;596(3):456–462. doi: 10.1016/0005-2736(80)90134-0. [DOI] [PubMed] [Google Scholar]
  9. Kumar N. M., Gilula N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol. 1986 Sep;103(3):767–776. doi: 10.1083/jcb.103.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McIntosh T. J., Ting-Beall H. P., Zampighi G. Alamethicin-induced changes in lipid bilayer morphology. Biochim Biophys Acta. 1982 Feb 8;685(1):51–60. doi: 10.1016/0005-2736(82)90034-7. [DOI] [PubMed] [Google Scholar]
  11. Menestrina G., Voges K. P., Jung G., Boheim G. Voltage-dependent channel formation by rods of helical polypeptides. J Membr Biol. 1986;93(2):111–132. doi: 10.1007/BF01870804. [DOI] [PubMed] [Google Scholar]
  12. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
  14. Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol. 1986 Jul;103(1):123–134. doi: 10.1083/jcb.103.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quay S. C., Latorre R. Molecular mechanisms of alamethicin channel gating. Biophys J. 1982 Jan;37(1):154–156. doi: 10.1016/S0006-3495(82)84648-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross M. J., Klymkowsky M. W., Agard D. A., Stroud R. M. Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol. 1977 Nov;116(4):635–659. doi: 10.1016/0022-2836(77)90264-9. [DOI] [PubMed] [Google Scholar]
  17. Schindler H., Nelson N. Proteolipid of adenosinetriphosphatase from yeast mitochondria forms proton-selective channels in planar lipid bilayers. Biochemistry. 1982 Nov 9;21(23):5787–5794. doi: 10.1021/bi00266a010. [DOI] [PubMed] [Google Scholar]
  18. Unwin N. Is there a common design for cell membrane channels? Nature. 1986 Sep 4;323(6083):12–13. doi: 10.1038/323012a0. [DOI] [PubMed] [Google Scholar]
  19. Velours J., Esparza M., Hoppe J., Sebald W., Guerin B. Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae. EMBO J. 1984 Jan;3(1):207–212. doi: 10.1002/j.1460-2075.1984.tb01785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. White S. H. Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys J. 1978 Sep;23(3):337–347. doi: 10.1016/S0006-3495(78)85453-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES