Abstract
We have used x-ray diffraction to study the interactions between myelin membranes in the sciatic nerve (PNS) and optic nerve (CNS) as a function of pH (2-10) and ionic strength (0-0.18). The period of myelin was found to change in a systematic manner with pH and ionic strength. PNS periods ranged from 165 to 250 A or more, while CNS periods ranged from 150 to 230 A. The native periods were observed only near physiological ionic strength at neutral or alkaline pH. The smallest periods were observed in the pH range 2.5-4 for PNS myelin and pH 2.5-5 for CNS myelin. The minimum period was also observed for PNS myelin after prolonged incubation in distilled water. At pH 4, within these acidic pH ranges, myelin period increased slightly with ionic strength; however, above these ranges, the period increased with pH and decreased with ionic strength. Electron density profiles calculated at different pH and ionic strength showed that the major structural alteration underlying the changes in period was in the width of the aqueous space at the extracellular apposition of membranes; the width of the cytoplasmic space was virtually constant. Assuming that the equilibrium myelin periods are determined by a balance of nonspecific forces/i.e., the electrostatic repulsion force and the van der Walls attractive force, as well as the short-range repulsion force (hydration force, or steric stabilization), then values in the period-dependency curve can be used to define the isoelectric pH and exclusion length of the membrane. The exclusion length, which is related to the minimum period at isoelectric pH, was used to calculate the electrostatic repulsion force given the other forces. The electrostatic repulsion was then used to calculate the surface potential, which in turn was used to calculate the surface charge density (at different pH and ionic strength). We found the negative surface charge increases with pH at constant ionic strength and with ionic strength at constant pH. We suggest that the former is due to deprotonation of the ionizable groups on the surface while the latter is due to ion binding. Interpretation of our data in terms of the chemical composition of myelin is given in the accompanying paper (Inouye and Kirschner, 1988). We also calculated the total potential energy functions for the different equilibrium periods and found that the energy minima became shallower and broader with increasing membrane separation. Finally, it was difficult to account directly for certain structural transitions from a balance of nonspecific forces. Such transitions included the abrupt appearance of the native period at alkaline pH and physiological ionic strength and the discontinuous compaction after prolonged treatment in distilled water. Possibly, in PNS myelin conformational modification of PO glycoprotein occurs under these conditions. The invariance of the cytoplasmic space suggests the presence of specific short-range interactions between surfaces at this apposition.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell G. I., Dembo M., Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J. 1984 Jun;45(6):1051–1064. doi: 10.1016/S0006-3495(84)84252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caspar D. L., Kirschner D. A. Myelin membrane structure at 10 A resolution. Nat New Biol. 1971 May 12;231(19):46–52. doi: 10.1038/newbio231046a0. [DOI] [PubMed] [Google Scholar]
- Deamer D. W., Bramhall J. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167–188. doi: 10.1016/0009-3084(86)90069-1. [DOI] [PubMed] [Google Scholar]
- Dupouey P., Jacque C., Bourre J. M., Cesselin F., Privat A., Baumann N. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett. 1979 Apr;12(1):113–118. doi: 10.1016/0304-3940(79)91490-3. [DOI] [PubMed] [Google Scholar]
- Elliott G. F. Force-balances and stability in hexagonally-packed polyelectrolyte systems. J Theor Biol. 1968 Oct;21(1):71–87. doi: 10.1016/0022-5193(68)90060-x. [DOI] [PubMed] [Google Scholar]
- Evans E. A., Parsegian V. A. Thermal-mechanical fluctuations enhance repulsion between bimolecular layers. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7132–7136. doi: 10.1073/pnas.83.19.7132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Metcalfe M. Free energy potential for aggregation of giant, neutral lipid bilayer vesicles by Van der Waals attraction. Biophys J. 1984 Sep;46(3):423–426. doi: 10.1016/S0006-3495(84)84039-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINEAN J. B., MILLINGTON P. F. Effects of ionic strength of immersion medium on the structure of peripheral nerve myelin. J Biophys Biochem Cytol. 1957 Jan 25;3(1):89–94. doi: 10.1083/jcb.3.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FINEAN J. B. The nature and stability of nerve myelin. Int Rev Cytol. 1961;12:303–336. doi: 10.1016/s0074-7696(08)60543-4. [DOI] [PubMed] [Google Scholar]
- Feinstein M. B., Felsenfeld H. Reactions of fluorescent probes with normal and chemically modified myelin. Biochemistry. 1975 Jul 15;14(14):3041–3048. doi: 10.1021/bi00685a001. [DOI] [PubMed] [Google Scholar]
- Gingell D., Parsegian V. A. Computation of van der Waals interactions in aqueous systems using reflectivity data. J Theor Biol. 1972 Jul;36(1):41–52. doi: 10.1016/0022-5193(72)90175-0. [DOI] [PubMed] [Google Scholar]
- Gutknecht J. Proton/hydroxide conductance through lipid bilayer membranes. J Membr Biol. 1984;82(1):105–112. doi: 10.1007/BF01870737. [DOI] [PubMed] [Google Scholar]
- Inouye H., Ganser A. L., Kirschner D. A. Shiverer and normal peripheral myelin compared: basic protein localization, membrane interactions, and lipid composition. J Neurochem. 1985 Dec;45(6):1911–1922. doi: 10.1111/j.1471-4159.1985.tb10551.x. [DOI] [PubMed] [Google Scholar]
- Inouye H., Kirschner D. A. Effects of ZnCl2 on membrane interactions in myelin of normal and shiverer mice. Biochim Biophys Acta. 1984 Oct 3;776(2):197–208. doi: 10.1016/0005-2736(84)90209-8. [DOI] [PubMed] [Google Scholar]
- Kimura M., Inoko H., Katsuki M., Ando A., Sato T., Hirose T., Takashima H., Inayama S., Okano H., Takamatsu K. Molecular genetic analysis of myelin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein. J Neurochem. 1985 Mar;44(3):692–696. doi: 10.1111/j.1471-4159.1985.tb12870.x. [DOI] [PubMed] [Google Scholar]
- Kirschner D. A., Caspar D. L. Myelin structure transformed by dimethylsulfoxide. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3513–3517. doi: 10.1073/pnas.72.9.3513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschner D. A., Ganser A. L. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature. 1980 Jan 10;283(5743):207–210. doi: 10.1038/283207a0. [DOI] [PubMed] [Google Scholar]
- Kirschner D. A., Ganser A. L. Myelin labeled with mercuric chloride. Asymmetric localization of phosphatidylethanolamine plasmalogen. J Mol Biol. 1982 Jun 5;157(4):635–658. doi: 10.1016/0022-2836(82)90503-4. [DOI] [PubMed] [Google Scholar]
- Kirschner D. A., Sapirstein V. S. Triethyl tin-induced myelin oedema: an intermediate swelling state detected by X-ray diffraction. J Neurocytol. 1982 Aug;11(4):559–569. doi: 10.1007/BF01262424. [DOI] [PubMed] [Google Scholar]
- Laursen R. A., Samiullah M., Lees M. B. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc Natl Acad Sci U S A. 1984 May;81(9):2912–2916. doi: 10.1073/pnas.81.9.2912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeNeveu D. M., Rand R. P. Measurement and modification of forces between lecithin bilayers. Biophys J. 1977 May;18(2):209–230. doi: 10.1016/S0006-3495(77)85608-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leitch G. J., Horrocks L. A., Samorajski T. Effects of cations on isolated bovine optic nerve myelin. J Neurochem. 1969 Sep;16(9):1347–1354. doi: 10.1111/j.1471-4159.1969.tb05985.x. [DOI] [PubMed] [Google Scholar]
- Lemke G., Axel R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell. 1985 Mar;40(3):501–508. doi: 10.1016/0092-8674(85)90198-9. [DOI] [PubMed] [Google Scholar]
- Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
- Loosley-Millman M. E., Rand R. P., Parsegian V. A. Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers. Biophys J. 1982 Dec;40(3):221–232. doi: 10.1016/S0006-3495(82)84477-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikoshiba K., Kohsaka S., Takamatsu K., Tsukada Y. Neurochemical and morphological studies on the myelin of peripheral nervous system from Shiverer mutant mice: absence of basic proteins common to central nervous system. Brain Res. 1981 Jan 12;204(2):455–460. doi: 10.1016/0006-8993(81)90608-9. [DOI] [PubMed] [Google Scholar]
- Miller A., Woodhead-Galloway J. Long range forces in muscle. Nature. 1971 Feb 12;229(5285):470–473. doi: 10.1038/229470a0. [DOI] [PubMed] [Google Scholar]
- Millman B. M., Irving T. C., Nickel B. G., Loosley-Millman M. E. Interrod forces in aqueous gels of tobacco mosaic virus. Biophys J. 1984 Mar;45(3):551–556. doi: 10.1016/S0006-3495(84)84192-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millman B. M., Nickel B. G. Electrostatic forces in muscle and cylindrical gel systems. Biophys J. 1980 Oct;32(1):49–63. doi: 10.1016/S0006-3495(80)84915-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moscarello M. A., Chia L. S., Leighton D., Absolom D. Size and surface charge properties of myelin vesicles from normal and diseased (multiple sclerosis) brain. J Neurochem. 1985 Aug;45(2):415–421. doi: 10.1111/j.1471-4159.1985.tb04003.x. [DOI] [PubMed] [Google Scholar]
- Naylor G. R., Bartels E. M., Bridgman T. D., Elliott G. F. Donnan potentials in rabbit psoas muscle in rigor. Biophys J. 1985 Jul;48(1):47–59. doi: 10.1016/S0006-3495(85)83759-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ninham B. W., Parsegian V. A. Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol. 1971 Jun;31(3):405–428. doi: 10.1016/0022-5193(71)90019-1. [DOI] [PubMed] [Google Scholar]
- Nir S., Andersen M. Van der Waals interactions between cell surfaces. J Membr Biol. 1977 Feb 24;31(1-2):1–18. doi: 10.1007/BF01869396. [DOI] [PubMed] [Google Scholar]
- Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsegian V. A. Long-range physical forces in the biological milieu. Annu Rev Biophys Bioeng. 1973;2:221–255. doi: 10.1146/annurev.bb.02.060173.001253. [DOI] [PubMed] [Google Scholar]
- ROBERTSON J. D. Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J Biophys Biochem Cytol. 1958 Jul 25;4(4):349–364. doi: 10.1083/jcb.4.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rand R. P., Fuller N. L., Lis L. J. Myelin swelling and measurement of forces between myelin membranes. Nature. 1979 May 17;279(5710):258–260. doi: 10.1038/279258a0. [DOI] [PubMed] [Google Scholar]
- Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
- Roach A., Boylan K., Horvath S., Prusiner S. B., Hood L. E. Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell. 1983 Oct;34(3):799–806. doi: 10.1016/0092-8674(83)90536-6. [DOI] [PubMed] [Google Scholar]
- Rome E. X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J Mol Biol. 1968 Oct 28;37(2):331–344. doi: 10.1016/0022-2836(68)90272-6. [DOI] [PubMed] [Google Scholar]
- Sculley M. J., Duniec J. T., Thorne S. W., Chow W. S., Boardman N. K. The stacking of chloroplast thylakoids. Quantitative analysis of the balance of forces between thylakoid membranes of chloroplasts, and the role of divalent cations. Arch Biochem Biophys. 1980 Apr 15;201(1):339–346. doi: 10.1016/0003-9861(80)90519-6. [DOI] [PubMed] [Google Scholar]
- Stoffel W., Giersiefen H., Hillen H., Schroeder W., Tunggal B. Amino-acid sequence of human and bovine brain myelin proteolipid protein (lipophilin) is completely conserved. Biol Chem Hoppe Seyler. 1985 Jul;366(7):627–635. doi: 10.1515/bchm3.1985.366.2.627. [DOI] [PubMed] [Google Scholar]
- TASAKI I. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am J Physiol. 1955 Jun;181(3):639–650. doi: 10.1152/ajplegacy.1955.181.3.639. [DOI] [PubMed] [Google Scholar]
- Worthington C. R., Blaurock A. E. A low-angle x-ray diffraction study of the swelling behavior of peripheral nerve myelin. Biochim Biophys Acta. 1969 Apr;173(3):427–435. doi: 10.1016/0005-2736(69)90007-8. [DOI] [PubMed] [Google Scholar]
