Abstract
The spin-lattice relaxation time of the 31P nucleus in the phosphate group of egg yolk phosphatidylcholine multilamellar dispersions has been investigated at four resonant frequencies (38.9, 81.0, 108.9, and 145.7 MHz) in the temperature range from -30 degrees to 60 degrees C. The observed frequency dependence of the relaxation indicates that both dipolar relaxation and relaxation due to anisotropic chemical shielding are significant mechanisms. The experimental data have thus been modeled assuming both mechanisms and the analysis has allowed the contribution of each to the relaxation to be determined along with the correlation time for the molecular reorientation as a function of temperature. Dipolar relaxation was found to dominate at low nuclear magnetic resonance frequencies while at high frequencies the anisotropic chemical shift dominates. The correlation time of the phosphate group is on the order of 10(-9) s at 60 degrees C and increases to approximately 10(-7) s at -30 degrees C. It is observed that the freezing of the buffer which occurs at approximately -8 degrees C has a significant effect on the phosphate group reorientation. This effect of the freezing is to change the activation energy for the phosphate group reorientation from 16.9 KJ/mol above -8 degrees C to 32.5 KJ/mol below -8 degrees C.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berden J. A., Cullis P. R., Hoult D. I., McLaughlin A. C., Radda G. K., Richards R. E. Frequency dependence of 31P NMR linewidths in sonicated phospholipid vesicles: effects of chemical shift anisotropy. FEBS Lett. 1974 Sep 15;46(1):55–58. doi: 10.1016/0014-5793(74)80333-9. [DOI] [PubMed] [Google Scholar]
- Büldt G., Wohlgemuth R. The headgroup conformation of phospholipids in membranes. J Membr Biol. 1981 Feb 15;58(2):81–100. doi: 10.1007/BF01870972. [DOI] [PubMed] [Google Scholar]
- Cullis P. R., De Kruyff B., Richards R. E. Factors affecting the motion of the polar headgroup in phospholipid bilayers. A 31P NMR study of unsonicated phosphatidylcholine liposomes. Biochim Biophys Acta. 1976 Mar 19;426(3):433–446. doi: 10.1016/0005-2736(76)90388-6. [DOI] [PubMed] [Google Scholar]
- Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
- Davis J. H. The influence of membrane proteins on lipid dynamics. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):223–258. doi: 10.1016/0009-3084(86)90072-1. [DOI] [PubMed] [Google Scholar]
- Griffin R. G. Solid state nuclear magnetic resonance of lipid bilayers. Methods Enzymol. 1981;72:108–174. doi: 10.1016/s0076-6879(81)72010-x. [DOI] [PubMed] [Google Scholar]
- Herzfeld J., Griffin R. G., Haberkorn R. A. Phosphorus-31 chemical-shift tensors in barium diethyl phosphate and urea-phosphoric acid: model compounds for phospholipid head-group studies. Biochemistry. 1978 Jul 11;17(14):2711–2718. doi: 10.1021/bi00607a003. [DOI] [PubMed] [Google Scholar]
- Horwitz A. F., Klein M. P. Magnetic resonance studies on membrane and model membrane systems. II. Phosphorus spectra and relaxation rates in dispersions of lecithin. J Supramol Struct. 1972;1(1):19–28. doi: 10.1002/jss.400010104. [DOI] [PubMed] [Google Scholar]
- Lange A., Marsh D., Wassmer K. H., Meier P., Kothe G. Electron spin resonance study of phospholipid membranes employing a comprehensive line-shape model. Biochemistry. 1985 Jul 30;24(16):4383–4392. doi: 10.1021/bi00337a020. [DOI] [PubMed] [Google Scholar]
- Neiderberger W., Seelig J. Phosphorus-31 chemical shift anisotropy in unsonicated phospholipid bilayers. J Am Chem Soc. 1976 Jun 9;98(12):3704–3706. doi: 10.1021/ja00428a053. [DOI] [PubMed] [Google Scholar]
- Paddy M. R., Dahlquist F. W., Davis J. H., Bloom M. Dynamical and temperature-dependent effects of lipid-protein interactions. Application of deuterium nuclear magnetic resonance and electron paramagnetic resonance spectroscopy to the same reconstitutions of cytochrome c oxidase. Biochemistry. 1981 May 26;20(11):3152–3162. doi: 10.1021/bi00514a026. [DOI] [PubMed] [Google Scholar]
- SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
- Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
- Seelig J., Tamm L., Hymel L., Fleischer S. Deuterium and phosphorus nuclear magnetic resonance and fluorescence depolarization studies of functional reconstituted sarcoplasmic reticulum membrane vesicles. Biochemistry. 1981 Jun 23;20(13):3922–3932. doi: 10.1021/bi00516a040. [DOI] [PubMed] [Google Scholar]
- Shepherd J. C., Büldt G. Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes. Biochim Biophys Acta. 1978 Dec 4;514(1):83–94. doi: 10.1016/0005-2736(78)90078-0. [DOI] [PubMed] [Google Scholar]
- Strenk L. M., Westerman P. W., Doane J. W. A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region. Biophys J. 1985 Nov;48(5):765–773. doi: 10.1016/S0006-3495(85)83834-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veksli Z., Salsbury N. J., Chapman D. Physical studies of phospholipids. XII. Nuclear magnetic resonance studies of molecular motion in some pure lecithin-water systems. Biochim Biophys Acta. 1969;183(3):434–446. doi: 10.1016/0005-2736(69)90158-8. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L., Hutton W. C., Huang C. H., Martin R. B. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3477–3481. doi: 10.1073/pnas.72.9.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeagle P. L., Hutton W. C., Huang C. H., Martin R. B. Structure in the polar head region of phospholipid bilayers: A 31P [1H] nuclear Overhauser effect study. Biochemistry. 1976 May 18;15(10):2121–2124. doi: 10.1021/bi00655a014. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L., Hutton W. C., Huang C., Martin R. B. Phospholipid head-group conformations; intermolecular interactions and cholesterol effects. Biochemistry. 1977 Oct 4;16(20):4344–4349. doi: 10.1021/bi00639a003. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L., Selinsky B. S., Albert A. D. Perturbations of phospholipid head groups by membrane proteins in biological membranes and recombinants. Biophys J. 1984 Jun;45(6):1085–1089. doi: 10.1016/S0006-3495(84)84256-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
