Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Nov;52(5):837–853. doi: 10.1016/S0006-3495(87)83277-0

SQUID measurement of metalloprotein magnetization. New methods applied to the nitrogenase proteins.

E P Day 1, T A Kent 1, P A Lindahl 1, E Münck 1, W H Orme-Johnson 1, H Roder 1, A Roy 1
PMCID: PMC1330187  PMID: 3480761

Abstract

New techniques have been developed to exploit the sensitivity of a commercial SQUID susceptometer in the study of the magnetization of metalloproteins. Previous studies have ignored both the slow relaxation (hours) of spin I = 1/2 nuclei and residual ferromagnetic impurities in sample holders. These potential sources of noise were at or below the sensitivity of previous instruments. With these noise sources under control, one can now decrease the protein concentration by a factor of ten. In addition careful characterization of the frozen magnetization sample, including the use of a multi-instrument holder for combined study of the magnetization sample with Mössbauer spectroscopy, is required for reliable interpretation of the data in the face of paramagnetic impurities common to metalloprotein samples. Many previous magnetic studies of metalloproteins have been carried out in the Curie region. Saturation magnetization studies down to 1.8 K and up to 5 T can determine zero-field splitting parameters in addition to the spin and exchange coupling parameters measured in previous studies at lower fields and higher temperatures. Applications of these techniques to the study of the nitrogenase proteins of Azotobacter vinelandii are presented as examples.

Full text

PDF
837

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davis L. C., Shah V. K., Brill W. J., Orme-Johnson W. H. Nitrogenase. II. Changes in the EPR signal of component I (iron-molybdenum protein) of Azotobacter vinelandii nitrogenase during repression and derepression. Biochim Biophys Acta. 1972 Feb 28;256(2):512–523. doi: 10.1016/0005-2728(72)90079-5. [DOI] [PubMed] [Google Scholar]
  2. FISCHER D. S., PRICE D. C. A SIMPLE SERUM IRON METHOD USING THE NEW SENSITIVE CHROMOGEN TRIPYRIDYL-S-TRIAZINE. Clin Chem. 1964 Jan;10:21–31. [PubMed] [Google Scholar]
  3. Hausinger R. P., Howard J. B. The amino acid sequence of the nitrogenase iron protein from Azotobacter vinelandii. J Biol Chem. 1982 Mar 10;257(5):2483–2490. [PubMed] [Google Scholar]
  4. Huynh B. H., Henzl M. T., Christner J. A., Zimmermann R., Orme-Johnson W. H., Münck E. Nitrogenase XII. Mössbauer studies of the MoFe protein from Clostridium pasteurianum W5. Biochim Biophys Acta. 1980 May 29;623(1):124–138. doi: 10.1016/0005-2795(80)90015-x. [DOI] [PubMed] [Google Scholar]
  5. Huynh B. H., Münck E., Orme-Johnson W. H. Nitrogenase XI: Mössbauer studies on the cofactor centers of the MoFe protein from Azotobacter vinelandii OP. Biochim Biophys Acta. 1979 Jan 25;576(1):192–203. doi: 10.1016/0005-2795(79)90497-5. [DOI] [PubMed] [Google Scholar]
  6. Lindahl P. A., Day E. P., Kent T. A., Orme-Johnson W. H., Münck E. Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe-4S]1+ cluster with spin S = 3/2. J Biol Chem. 1985 Sep 15;260(20):11160–11173. [PubMed] [Google Scholar]
  7. Moss T. H. Magnetic susceptibility applied to metalloproteins. Methods Enzymol. 1978;54:379–396. doi: 10.1016/s0076-6879(78)54024-x. [DOI] [PubMed] [Google Scholar]
  8. Moss T. H., Petering D., Palmer G. The magnetic susceptibility of oxidized and reduced ferredoxins from spinach and parsley and the high potential protein from Chromatium. J Biol Chem. 1969 May 10;244(9):2275–2277. [PubMed] [Google Scholar]
  9. Münck E., Rhodes H., Orme-Johnson W. H., Davis L. C., Brill W. J., Shah V. K. Nitrogenase. VIII. Mössbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP. Biochim Biophys Acta. 1975 Jul 21;400(1):32–53. doi: 10.1016/0005-2795(75)90124-5. [DOI] [PubMed] [Google Scholar]
  10. Orme-Johnson W. H. Molecular basis of biological nitrogen fixation. Annu Rev Biophys Biophys Chem. 1985;14:419–459. doi: 10.1146/annurev.bb.14.060185.002223. [DOI] [PubMed] [Google Scholar]
  11. Palmer G., Dunham W. R., Fee J. A., Sands R. H., Iizuka T., Yonetani T. The magnetic susceptibility of spinach ferredoxin from 77-250 degrees K: a measurement of the antiferromagnetic coupling between the two iron atoms. Biochim Biophys Acta. 1971 Aug 6;245(1):201–207. doi: 10.1016/0005-2728(71)90022-3. [DOI] [PubMed] [Google Scholar]
  12. Petersson L., Cammack R., Rao K. K. Antiferromagnetic exchange interaction in the two-iron-two-sulphur ferredoxin from the blue-green alga Spirulina maxima studied with a highly sensitive magnetic balance. Biochim Biophys Acta. 1980 Mar 26;622(1):18–24. doi: 10.1016/0005-2795(80)90154-3. [DOI] [PubMed] [Google Scholar]
  13. Philo J. S. Kinetics of hemoglobin-carbon monoxide reactions measured with a superconducting magnetometer: a new method for fast reactions in solution. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2620–2623. doi: 10.1073/pnas.74.7.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roder H., Berendzen J., Bowne S. F., Frauenfelder H., Sauke T. B., Shyamsunder E., Weissman M. B. Comparison of the magnetic properties of deoxy- and photodissociated myoglobin. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2359–2363. doi: 10.1073/pnas.81.8.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Savicki J. P., Lang G., Ikeda-Saito M. Magnetic susceptibility of oxy- and carbonmonoxyhemoglobins. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5417–5419. doi: 10.1073/pnas.81.17.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shah V. K., Brill W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3249–3253. doi: 10.1073/pnas.74.8.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith B. E., Lowe D. J., Bray R. C. Nitrogenase of Klebsiella pneumoniae: electron-paramagnetic-resonance studies on the catalytic mechanism. Biochem J. 1972 Nov;130(2):641–643. doi: 10.1042/bj1300641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith J. P., Emptage M. H., Orme-Johnson W. H. Magnetic susceptibility studies of native and thionine-oxidized molybdenum-iron protein from Azotobacter vinelandii nitrogenase. J Biol Chem. 1982 Mar 10;257(5):2310–2313. [PubMed] [Google Scholar]
  19. Tweedle M. F., Wilson L. J. Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200 K. Direct evidence for an antiferromagnetically coupled Fe (III)/Cu (II) pair. J Biol Chem. 1978 Nov 25;253(22):8065–8071. [PubMed] [Google Scholar]
  20. Zimmermann R., Münck E., Brill W. J., Shah V. K., Henzl M. T., Rawlings J., Orme-Johnson W. H. Nitrogenase X: Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Nature of the iron centers. Biochim Biophys Acta. 1978 Dec 20;537(2):185–207. doi: 10.1016/0005-2795(78)90504-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES