Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1987 Nov;52(5):873–883. doi: 10.1016/S0006-3495(87)83281-2

Acetylcholine receptor: channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements.

J B Udgaonkar 1, G P Hess 1
PMCID: PMC1330191  PMID: 2447965

Abstract

A combination of rapid chemical kinetic (quench-flow) and single-channel current measurements was used to evaluate kinetic parameters governing the opening of acetylcholine-receptor channels in the electric organ (electroplax) of Electrophorus electricus. Chemical kinetic measurements made on membrane vesicles, prepared from the E. electricus electroplax, using carbamoylcholine (200 microM-20 mM) at 12 degrees C, pH 7.0, and in the absence of a transmembrane voltage, yielded values for K1 (dissociation constant for receptor activation), phi (channel closing equilibrium constant), J (specific reaction rate for ion flux), and alpha max (maximum inactivation rate constant) of 1 mM, 3.4, 4 x 10(7) M-1 s-1, and 12 s-1, respectively. The single-channel current recordings were made with cells also from the E. electricus electroplax, at the same temperature and pH as the chemical kinetic measurements, using carbamoylcholine (50 microM-2 mM), acetylcholine (500 nM), or suberyldicholine (20 nM). Single-channel current measurements indicated the presence of a single, unique open-channel state of the E. electricus receptor, in concurrence with previous, less extensive measurements. The rate constant for channel closing (kc) obtained from the mean open time of the receptor channel is 1,100 s-1 for carbamoylcholine, 1,200 s-1 for acetylcholine, and 360 s-1 for suberyldicholine at zero membrane potential; and it decreases e-fold for an 80 mV decrease in transmembrane voltage in each case. The decrease in mean open times of the receptor channel that is associated with increasing the carbamoylcholine concentration is interpreted to be due to carbamoylcholine binding to the regulatory (inhibitory) site on the receptor. An analysis of data obtained with carbamoylcholine showed that the closed times within a burst of channel activity fit a two-exponential distribution, with a concentration-independent time constant considered to be the time constant for carbamoylcholine to dissociate from the regulatory site, and a carbamoylcholine concentration-dependent, but voltage-independent, time constant interpreted to represent the rate constant for channel opening (k0). An analysis of the mean closed time data on the basis of the minimum model gives values for K1 and k0 of 0.6 mM and 440 s-1, respectively, with carbamoylcholine as the activating ligand. The values obtained for K1, phi (= kc/k0), J, and alpha from the single-channel current measurements using electroplax are in good agreement with the values obtained from the chemical kinetic measurements using receptor-rich vesicles prepared from the same cells. These results confirm the assumed basic agreement between two entirely different methodologies and underlie the strategy of using the two techniques to obtain complementary information in time and ligand-concentration regions where only one or the other technique can be used. This agreement between results allows estimates to be made of the ko values, for both acetylcholine and suberyldicholine, from the phi values obtained from the chemical kinetic measurements and the kc values obtained in single-channel current measurements.

Full text

PDF
873

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R. Acetylcholine receptor kinetics. J Membr Biol. 1981 Feb 28;58(3):161–174. doi: 10.1007/BF01870902. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. R., Stevens C. F. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973 Dec;235(3):655–691. doi: 10.1113/jphysiol.1973.sp010410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aoshima H. A second, slower inactivation process in acetylcholine receptor-rich membrane vesicles prepared from Electrophorus electricus. Arch Biochem Biophys. 1984 Dec;235(2):312–318. doi: 10.1016/0003-9861(84)90203-0. [DOI] [PubMed] [Google Scholar]
  4. Aoshima H., Cash D. J., Hess G. P. Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. Biochemistry. 1981 Jun 9;20(12):3467–3474. doi: 10.1021/bi00515a025. [DOI] [PubMed] [Google Scholar]
  5. Auerbach A., Sachs F. Single-channel currents from acetylcholine receptors in embryonic chick muscle. Kinetic and conductance properties of gaps within bursts. Biophys J. 1984 Jan;45(1):187–198. doi: 10.1016/S0006-3495(84)84147-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cash D. J., Aoshima H., Hess G. P. Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: chemical kinetic measurements in the millisecond time region. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3318–3322. doi: 10.1073/pnas.78.6.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cash D. J., Hess G. P. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes. Proc Natl Acad Sci U S A. 1980 Feb;77(2):842–846. doi: 10.1073/pnas.77.2.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cash D. J., Hess G. P. Quenched flow technique with plasma membrane vesicles: acetylcholine receptor-mediated transmembrane ion flux. Anal Biochem. 1981 Mar 15;112(1):39–51. doi: 10.1016/0003-2697(81)90257-8. [DOI] [PubMed] [Google Scholar]
  9. Changeux J. P., Devillers-Thiéry A., Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984 Sep 21;225(4668):1335–1345. doi: 10.1126/science.6382611. [DOI] [PubMed] [Google Scholar]
  10. Colquhoun D., Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985 Dec;369:501–557. doi: 10.1113/jphysiol.1985.sp015912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colquhoun D., Sakmann B. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature. 1981 Dec 3;294(5840):464–466. doi: 10.1038/294464a0. [DOI] [PubMed] [Google Scholar]
  12. Dwyer T. M. The rising phase of the miniature endplate current at the frog neuromuscular junction. Biochim Biophys Acta. 1981 Aug 6;646(1):51–60. doi: 10.1016/0005-2736(81)90271-6. [DOI] [PubMed] [Google Scholar]
  13. Fu J. L., Donner D. B., Moore D. E., Hess G. P. Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators: equilibrium measurements. Biochemistry. 1977 Feb 22;16(4):678–684. doi: 10.1021/bi00623a019. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hess G. P., Aoshima H., Cash D. J., Lenchitz B. Specific reaction rate of acetylcholine receptor-controlled ion translocation: a comparison of measurements with membrane vesicles and with muscle cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1361–1365. doi: 10.1073/pnas.78.3.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hess G. P., Cash D. J., Aoshima H. Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques. Nature. 1979 Nov 15;282(5736):329–331. doi: 10.1038/282329a0. [DOI] [PubMed] [Google Scholar]
  17. Hess G. P., Cash D. J., Aoshima H. Acetylcholine receptor-controlled ion translocation: chemical kinetic investigations of the mechanism. Annu Rev Biophys Bioeng. 1983;12:443–473. doi: 10.1146/annurev.bb.12.060183.002303. [DOI] [PubMed] [Google Scholar]
  18. Hess G. P., Kolb H. A., Läuger P., Schoffeniels E., Schwarze W. Acetylcholine receptor (from Electrophorus electricus): a comparison of single-channel current recordings and chemical kinetic measurements. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5281–5285. doi: 10.1073/pnas.81.17.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hess G. P., Lipkowitz S., Struve G. E. Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): change in mechanism produced by asymmetrical distribution of sodium and potassium ions. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1703–1707. doi: 10.1073/pnas.75.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hess G. P., Udgaonkar J. B., Olbricht W. L. Chemical kinetic measurements of transmembrane processes using rapid reaction techniques: acetylcholine receptor. Annu Rev Biophys Biophys Chem. 1987;16:507–534. doi: 10.1146/annurev.bb.16.060187.002451. [DOI] [PubMed] [Google Scholar]
  21. Kuffler S. W., Yoshikami D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol. 1975 Oct;251(2):465–482. doi: 10.1113/jphysiol.1975.sp011103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Land B. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3736–3740. doi: 10.1073/pnas.77.6.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lester H. A., Koblin D. D., Sheridan R. E. Role of voltage-sensitive receptors in nicotinic transmission. Biophys J. 1978 Mar;21(3):181–194. doi: 10.1016/S0006-3495(78)85518-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neher E., Sakmann B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres. J Physiol. 1976 Jul;258(3):705–729. doi: 10.1113/jphysiol.1976.sp011442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
  26. Neher E., Sakmann B. Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2140–2144. doi: 10.1073/pnas.72.6.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neher E. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anaesthetics. J Physiol. 1983 Jun;339:663–678. doi: 10.1113/jphysiol.1983.sp014741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pasquale E. B., Takeyasu K., Udgaonkar J. B., Cash D. J., Severski M. C., Hess G. P. Acetylcholine receptor: evidence for a regulatory binding site in investigations of suberyldicholine-induced transmembrane ion flux in Electrophorus electricus membrane vesicles. Biochemistry. 1983 Dec 6;22(25):5967–5973. doi: 10.1021/bi00294a041. [DOI] [PubMed] [Google Scholar]
  29. Pasquale E. B., Udgaonkar J. B., Hess G. P. Single-channel current recordings of acetylcholine receptors in electroplax isolated from the Electrophorus electricus Main and Sachs' electric organs. J Membr Biol. 1986;93(2):195–204. doi: 10.1007/BF01870811. [DOI] [PubMed] [Google Scholar]
  30. Sachs F., Neil J., Barkakati N. The automated analysis of data from single ionic channels. Pflugers Arch. 1982 Dec;395(4):331–340. doi: 10.1007/BF00580798. [DOI] [PubMed] [Google Scholar]
  31. Sakmann B., Neher E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 1984;46:455–472. doi: 10.1146/annurev.ph.46.030184.002323. [DOI] [PubMed] [Google Scholar]
  32. Sakmann B., Patlak J., Neher E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature. 1980 Jul 3;286(5768):71–73. doi: 10.1038/286071a0. [DOI] [PubMed] [Google Scholar]
  33. Sheridan R. E., Lester H. A. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques: a study of neurally evoked postsynaptic currents and of voltage-jump relaxations. J Gen Physiol. 1977 Aug;70(2):187–219. [PMC free article] [PubMed] [Google Scholar]
  34. Sheridan R. E., Lester H. A. Relaxation measurements on the acetylcholine receptor. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3496–3500. doi: 10.1073/pnas.72.9.3496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shiono S., Takeyasu K., Udgaonkar J. B., Delcour A. H., Fujita N., Hess G. P. Regulatory properties of acetylcholine receptor: evidence for two different inhibitory sites, one for acetylcholine and the other for a noncompetitive inhibitor of receptor function (procaine). Biochemistry. 1984 Dec 18;23(26):6889–6893. doi: 10.1021/bi00321a094. [DOI] [PubMed] [Google Scholar]
  36. Sine S. M., Steinbach J. H. Activation of a nicotinic acetylcholine receptor. Biophys J. 1984 Jan;45(1):175–185. doi: 10.1016/S0006-3495(84)84146-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sine S. M., Steinbach J. H. Agonists block currents through acetylcholine receptor channels. Biophys J. 1984 Aug;46(2):277–283. doi: 10.1016/S0006-3495(84)84022-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Suarez-Isla B. A., Wan K., Lindstrom J., Montal M. Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry. 1983 May 10;22(10):2319–2323. doi: 10.1021/bi00279a003. [DOI] [PubMed] [Google Scholar]
  39. Takeyasu K., Shiono S., Udgaonkar J. B., Fujita N., Hess G. P. Acetylcholine receptor: characterization of the voltage-dependent regulatory (inhibitory) site for acetylcholine in membrane vesicles from Torpedo californica electroplax. Biochemistry. 1986 Apr 8;25(7):1770–1776. doi: 10.1021/bi00355a048. [DOI] [PubMed] [Google Scholar]
  40. Takeyasu K., Udgaonkar J. B., Hess G. P. Acetylcholine receptor: evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. Biochemistry. 1983 Dec 6;22(25):5973–5978. doi: 10.1021/bi00294a042. [DOI] [PubMed] [Google Scholar]
  41. Tank D. W., Huganir R. L., Greengard P., Webb W. W. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5129–5133. doi: 10.1073/pnas.80.16.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Udgaonkar J. B., Hess G. P. Acetylcholine receptor kinetics: chemical kinetics. J Membr Biol. 1986;93(2):93–109. doi: 10.1007/BF01870803. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES