Abstract
Double voltage clamp studies were performed on gap junctions contained in septal membranes of the earthworm median giant axon. The gap junctions exhibited no conductance changes in response to voltages imposed across either the septal membrane or the plasma membrane. However, the trans-septal current displayed a slow (10 s) relaxation in response to transjunctional voltage steps. The experimental evidence suggests that this relaxation is a polarization of the septum due to local accumulation/depletion of permeant ions. A theoretical analysis of this observation suggests that the applied electric field causes accumulation of impermeant anions on one side of the junction and depletion on the other, which leads to a change in concentration of permeant ions to maintain macroscopic electroneutrality. The change in concentration of permeant ions generates a transjunctional equilibrium potential that opposes junctional current flow. These results indicate that currents flowing through gap junctions can have an influence on the distribution of intracellular ions. Moreover, the theoretical analysis suggests that such currents will be accompanied by significant intracellular and intercellular water flow.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brink P. R. Effect of deuterium oxide on junctional membrane channel permeability. J Membr Biol. 1983;71(1-2):79–87. doi: 10.1007/BF01870676. [DOI] [PubMed] [Google Scholar]
- Brink P. R., Ramanan S. V. A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Axoplasmic diffusion and junctional membrane permeability. Biophys J. 1985 Aug;48(2):299–309. doi: 10.1016/S0006-3495(85)83783-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brink P., Barr L. The resistance of the septum of the median giant axon of the earthworm. J Gen Physiol. 1977 May;69(5):517–536. doi: 10.1085/jgp.69.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURSHPAN E. J., POTTER D. D. Mechanism of nerve-impulse transmission at a crayfish synapse. Nature. 1957 Aug 17;180(4581):342–343. doi: 10.1038/180342a0. [DOI] [PubMed] [Google Scholar]
- Jaslove S. W., Brink P. R. The mechanism of rectification at the electrotonic motor giant synapse of the crayfish. Nature. 1986 Sep 4;323(6083):63–65. doi: 10.1038/323063a0. [DOI] [PubMed] [Google Scholar]
- Johnston M. F., Ramón F. Voltage independence of an electrotonic synapse. Biophys J. 1982 Jul;39(1):115–117. doi: 10.1016/S0006-3495(82)84497-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathias R. T., Rae J. L. Transport properties of the lens. Am J Physiol. 1985 Sep;249(3 Pt 1):C181–C190. doi: 10.1152/ajpcell.1985.249.3.C181. [DOI] [PubMed] [Google Scholar]
- Mathias R. T. Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues. Biophys J. 1985 Sep;48(3):435–448. doi: 10.1016/S0006-3495(85)83799-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neyton J., Trautmann A. Single-channel currents of an intercellular junction. 1985 Sep 26-Oct 2Nature. 317(6035):331–335. doi: 10.1038/317331a0. [DOI] [PubMed] [Google Scholar]
- Obaid A. L., Socolar S. J., Rose B. Cell-to-cell channels with two independently regulated gates in series: analysis of junctional conductance modulation by membrane potential, calcium, and pH. J Membr Biol. 1983;73(1):69–89. doi: 10.1007/BF01870342. [DOI] [PubMed] [Google Scholar]
- Verselis V., Brink P. R. The gap junction channel. Its aqueous nature as indicated by deuterium oxide effects. Biophys J. 1986 Nov;50(5):1003–1007. doi: 10.1016/S0006-3495(86)83542-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verselis V., Brink P. R. Voltage clamp of the earthworm septum. Biophys J. 1984 Jan;45(1):147–150. doi: 10.1016/S0006-3495(84)84143-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970 Nov;210(4):1041–1054. doi: 10.1113/jphysiol.1970.sp009256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weingart R. Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J Physiol. 1986 Jan;370:267–284. doi: 10.1113/jphysiol.1986.sp015934. [DOI] [PMC free article] [PubMed] [Google Scholar]