Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Jun;53(6):885–892. doi: 10.1016/S0006-3495(88)83169-2

Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis.

C Joshi 1, J M Fernandez 1
PMCID: PMC1330269  PMID: 3395658

Abstract

We have studied the admittance of patch-clamped mast cells during exocytosis and found that they are adequately described by a four parameter equivalent circuit. On the basis of these measurements, we show that, contrary to current belief, when using a phase sensitive detector, small capacitance changes due to exocytosis or endocytosis should be studied by measuring current 90 degrees out of phase, relative to the component that corresponds to changes in series resistance. We have extended the theory on phase-detectors to include the errors in the estimation of step changes of membrane capacitance. We show that the measured capacitance of a secretory granule can be up to 80% smaller than its true value, during the course of a typical mast cell degranulation. We also describe a software-based phase-detector that simplifies capacitance measurements.

Full text

PDF
885

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  2. Breckenridge L. J., Almers W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1945–1949. doi: 10.1073/pnas.84.7.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clausen C., Fernandez J. M. A low-cost method for rapid transfer function measurements with direct application to biological impedance analysis. Pflugers Arch. 1981 Jun;390(3):290–295. doi: 10.1007/BF00658279. [DOI] [PubMed] [Google Scholar]
  4. Cole K. S. ELECTRIC IMPEDANCE OF HIPPONOE EGGS. J Gen Physiol. 1935 Jul 20;18(6):877–887. doi: 10.1085/jgp.18.6.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  6. Gillespie J. I. The effect of repetitive stimulation on the passive electrical properties of the presynaptic terminal of the squid giant synapse. Proc R Soc Lond B Biol Sci. 1979 Dec 31;206(1164):293–306. doi: 10.1098/rspb.1979.0106. [DOI] [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Jaffe L. A., Hagiwara S., Kado R. T. The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev Biol. 1978 Nov;67(1):243–248. doi: 10.1016/0012-1606(78)90314-7. [DOI] [PubMed] [Google Scholar]
  9. Lindau M., Fernandez J. M. A patch-clamp study of histamine-secreting cells. J Gen Physiol. 1986 Sep;88(3):349–368. doi: 10.1085/jgp.88.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peres A., Bernardini G. The effective membrane capacity of Xenopus eggs: its relations with membrane conductance and cortical granule exocytosis. Pflugers Arch. 1985 Jul;404(3):266–272. doi: 10.1007/BF00581249. [DOI] [PubMed] [Google Scholar]
  12. Zimmerberg J., Curran M., Cohen F. S., Brodwick M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1585–1589. doi: 10.1073/pnas.84.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES