Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Aug;54(2):205–218. doi: 10.1016/S0006-3495(88)82949-7

Theory of optical ellipsometric measurements from muscle diffraction studies.

Y Yeh 1, R J Baskin 1
PMCID: PMC1330286  PMID: 3207822

Abstract

A theory of optical ellipsometry describing the complete phase shift and ellipticity of light diffracted from a single muscle fiber is developed. We show that both the phase shift information, described commonly by the birefringence of the fiber, and the ellipticity information, described by the differential polarizability ratio, are necessary to provide a complete picture of the complex contributions to the total optical anisotropy spectra from a diffraction pattern derived from the striated muscle cell. Both form and intrinsic contributions play significant roles in either the birefringence measurement or the differential field ratio measurement. However, we show that their relative weights in these two measured quantities are different, and measuring both of these parameters is necessary to obtain a more complete assessment of the cross-bridge structure and dynamics. The theoretical results have been tested for three different situations: solvent index matching, passive stretch of a resting fiber, and cross-bridge changes under isometric conditions. Comparisons between experimental data and simple model calculations provide much information regarding cross-bridge orientation and structure.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett V. A., Fajer P., Polnaszek C. F., Thomas D. D. High-Resolution Detection of muscle Crossbridge Orientation by Electron Paramagnetic Resonance. Biophys J. 1986 Jan;49(1):144–147. doi: 10.1016/S0006-3495(86)83628-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baskin R. J., Yeh Y., Burton K., Chen J. S., Jones M. Optical depolarization changes in single, skinned muscle fibers. Evidence for cross-bridge involvement. Biophys J. 1986 Jul;50(1):63–74. doi: 10.1016/S0006-3495(86)83439-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylor S. M., Oetliker H. The optical properties of birefringence signals from single muscle fibres. J Physiol. 1977 Jan;264(1):163–198. doi: 10.1113/jphysiol.1977.sp011662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colby R. H. Intrinsic birefringence of glycerinated myofibrils. J Cell Biol. 1971 Dec;51(3):763–771. doi: 10.1083/jcb.51.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooke R., Crowder M. S., Thomas D. D. Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature. 1982 Dec 23;300(5894):776–778. doi: 10.1038/300776a0. [DOI] [PubMed] [Google Scholar]
  6. Fujime S., Yoshino S. Optical diffraction study of muscle fibers. I. A theoretical basis. Biophys Chem. 1978 Sep;8(4):305–315. doi: 10.1016/0301-4622(78)80013-1. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY A. F., NIEDERGERKE R. Measurement of the striations of isolated muscle fibres with the interference microscope. J Physiol. 1958 Dec 30;144(3):403–425. doi: 10.1113/jphysiol.1958.sp006110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUXLEY H. E., HANSON J. Quantitative studies on the structure of cross-striated myofibrils. I. Investigations by interference microscopy. Biochim Biophys Acta. 1957 Feb;23(2):229–249. doi: 10.1016/0006-3002(57)90325-6. [DOI] [PubMed] [Google Scholar]
  9. Highsmith S., Eden D. Transient electrical birefringence characterization of heavy meromyosin. Biochemistry. 1985 Aug 27;24(18):4917–4924. doi: 10.1021/bi00339a029. [DOI] [PubMed] [Google Scholar]
  10. Higuchi H., Umazume Y. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J. 1986 Sep;50(3):385–389. doi: 10.1016/S0006-3495(86)83474-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huxley H. E., Kress M. Crossbridge behaviour during muscle contraction. J Muscle Res Cell Motil. 1985 Apr;6(2):153–161. doi: 10.1007/BF00713057. [DOI] [PubMed] [Google Scholar]
  12. Leung A. F., Cheung M. K. Polarization changes in light diffracted from contracting muscle fibers. Cell Biophys. 1987 Apr;10(2):127–144. doi: 10.1007/BF02797396. [DOI] [PubMed] [Google Scholar]
  13. Leung A. F. Degree of polarization of light diffracted from resting striated muscle. Cell Biophys. 1987 Apr;10(2):145–168. doi: 10.1007/BF02797397. [DOI] [PubMed] [Google Scholar]
  14. Matsubara I., Elliott G. F. X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol. 1972 Dec 30;72(3):657–669. doi: 10.1016/0022-2836(72)90183-0. [DOI] [PubMed] [Google Scholar]
  15. Maéda Y. Birefringence of oriented thin filaments in the I-bands of crab striated muscle and comparison with the flow birefringence of reconstituted thin filaments. Eur J Biochem. 1978 Sep 15;90(1):113–121. doi: 10.1111/j.1432-1033.1978.tb12581.x. [DOI] [PubMed] [Google Scholar]
  16. Taylor D. L. Birefringence changes in vertebrate striated muscle. J Supramol Struct. 1975;3(2):181–191. doi: 10.1002/jss.400030212. [DOI] [PubMed] [Google Scholar]
  17. Ueno H., Harrington W. F. Conformational transition in the myosin hinge upon activation of muscle. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6101–6105. doi: 10.1073/pnas.78.10.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yeh Y., Baskin R. J., Brown R. A., Burton K. Depolarization spectrum of diffracted light from muscle fiber. The intrinsic anisotropy component. Biophys J. 1985 May;47(5):739–742. doi: 10.1016/S0006-3495(85)83973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yeh Y., Baskin R. J., Lieber R. L., Roos K. P. Theory of light diffraction by single skeletal muscle fibers. Biophys J. 1980 Mar;29(3):509–522. doi: 10.1016/S0006-3495(80)85149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yeh Y., Corcoran M. E., Baskin R. J., Lieber R. L. Optical depolarization changes on the diffraction pattern in the transition of skinned muscle fibers from relaxed to rigor state. Biophys J. 1983 Dec;44(3):343–351. doi: 10.1016/S0006-3495(83)84308-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES