Abstract
The calcium uptake reaction kinetics of isolated sarcoplasmic reticulum (SR) vesicles have previously been shown to be at least biphasic over a range of temperatures (26 to 10 degrees C) with a fast phase identified with the formation of E1 approximately P and calcium occlusion and a slow phase with Ca2+ translocation across the membrane and turnover of the Ca2+ ATPase ensemble. At "low" temperatures, namely 0 degrees C or lower, E1 approximately P formation is slowed and E1 approximately P is transiently trapped for at least several seconds, as indicated by the absence of the slow phase for 6 s or more. We now report that a reversible, temperature-induced structural transition occurs at about 2-3 degrees C for the isolated SR membrane. We have investigated the nature of this structural transition utilizing meridional and equatorial x-ray diffraction studies of the oriented SR membrane multilayers in the range of temperatures between 7.5 and -2 degrees C. The phase meridional (lamellar) diffraction has provided the profile structure for the SR membrane at the highest vs. lowest temperature at the same moderate resolution of 16-17 A while the equatorial diffraction has provided information on the average lipid chain packing in the SR membrane plane in the two cases. To identify the contribution of each membrane component in producing the differences between the profile structures at 7.5 and -2 degrees C, step-function models have been fitted to the moderate resolution electron density profiles. Lipid lateral phase separation may be responsible for inducing the structural change in the Ca2+ ATPase, thereby resulting in the slowing of E1 approximately P formation and the transient trapping of E1 approximately P at the "lower" temperatures.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blasie J. K., Herbette L. G., Pascolini D., Skita V., Pierce D. H., Scarpa A. Time-resolved x-ray diffraction studies of the sarcoplasmic reticulum membrane during active transport. Biophys J. 1985 Jul;48(1):9–18. doi: 10.1016/S0006-3495(85)83756-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blasie J. K., Pascolini D., Herbette L., Pierce D., Itshak F., Skita V., Scarpa A. Time-resolved structural studies of the sarcoplasmic reticulum membrane. Biophys J. 1986 Jan;49(1):110–111. doi: 10.1016/S0006-3495(86)83613-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis D. G., Inesi G., Gulik-Krzywicki T. Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry. 1976 Mar 23;15(6):1271–1276. doi: 10.1021/bi00651a016. [DOI] [PubMed] [Google Scholar]
- Duggan P. F., Martonosi A. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes. J Gen Physiol. 1970 Aug;56(2):147–167. doi: 10.1085/jgp.56.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
- Herbette L., DeFoor P., Fleischer S., Pascolini D., Scarpa A., Blasie J. K. The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X-ray and neutron diffraction. Biochim Biophys Acta. 1985 Jul 11;817(1):103–122. doi: 10.1016/0005-2736(85)90073-2. [DOI] [PubMed] [Google Scholar]
- Herbette L., Marquardt J., Scarpa A., Blasie J. K. A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J. 1977 Nov;20(2):245–272. doi: 10.1016/S0006-3495(77)85547-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbette L., Scarpa A., Blasie J. K., Wang C. T., Saito A., Fleischer S. Comparison of the profile structures of isolated and reconstituted sarcoplasmic reticulum membranes. Biophys J. 1981 Oct;36(1):47–72. doi: 10.1016/S0006-3495(81)84716-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayaraman U., Chang T., Frey T. G., Blasie J. K. Electron density profile of two-dimensionally crystalline membranous cytochrome c oxidase at low resolution. Biophys J. 1987 Mar;51(3):475–486. doi: 10.1016/S0006-3495(87)83369-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linden C. D., Blasie J. K., Fox C. F. A confirmation of the phase behavior of Escherichia coli cytoplasmic membrane lipids by X-ray diffraction. Biochemistry. 1977 Apr 19;16(8):1621–1625. doi: 10.1021/bi00627a015. [DOI] [PubMed] [Google Scholar]
- McCray J. A., Herbette L., Kihara T., Trentham D. R. A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7237–7241. doi: 10.1073/pnas.77.12.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G., Conner G. E., Fleischer S. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca 2+ -pump and Ca 2+ -binding proteins. Biochim Biophys Acta. 1973 Mar 16;298(2):246–269. doi: 10.1016/0005-2736(73)90355-6. [DOI] [PubMed] [Google Scholar]
- Pascolini D., Herbette L. G., Skita V., Asturias F., Scarpa A., Blasie J. K. Changes in the sarcoplasmic reticulum membrane profile induced by enzyme phosphorylation to E1 approximately P at 16 A resolution via time-resolved x-ray diffraction. Biophys J. 1988 Oct;54(4):679–687. doi: 10.1016/S0006-3495(88)83003-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce D. H., Scarpa A., Topp M. R., Blasie J. K. Kinetics of calcium uptake by isolated sarcoplasmic reticulum vesicles using flash photolysis of caged adenosine 5'-triphosphate. Biochemistry. 1983 Nov 8;22(23):5254–5261. doi: 10.1021/bi00292a003. [DOI] [PubMed] [Google Scholar]
- Pierce D. H., Scarpa A., Trentham D. R., Topp M. R., Blasie J. K. Comparison of the kinetics of calcium transport in vesicular dispersions and oriented multilayers of isolated sarcoplasmic reticulum membranes. Biophys J. 1983 Dec;44(3):365–373. doi: 10.1016/S0006-3495(83)84310-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz S., Cain J. E., Dratz E. A., Blasie J. K. An analysis of lamellar x-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys J. 1975 Dec;15(12):1201–1233. doi: 10.1016/S0006-3495(75)85895-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stroud R. M., Agard D. A. Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophys J. 1979 Mar;25(3):495–512. doi: 10.1016/S0006-3495(79)85319-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBER A., HERZ R., REISS I. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum. J Gen Physiol. 1963 Mar;46:679–702. doi: 10.1085/jgp.46.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]
