Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Nov;54(5):879–884. doi: 10.1016/S0006-3495(88)83024-8

Electromobile surface charge alters membrane potential changes induced by applied electric fields.

D Gross 1
PMCID: PMC1330396  PMID: 3242634

Abstract

The relation between extracellular electric fields and changes in membrane potential that such fields directly induce has previously been described both theoretically and experimentally. It is clearly established that extracellular electric-field-induced membrane potential changes are well described by Poisson's equation of electrostatics. A modification of this simple theory to include effects of the electric-field-induced redistribution of charged cell surface components is introduced and is shown to produce major alterations in calculated membrane potential changes over times of the order of minutes to hours. Implications for biological systems which respond to extracellular electric fields are discussed.

Full text

PDF
879

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASSETT C. A., PAWLUK R. J., BECKER R. O. EFFECTS OF ELECTRIC CURRENTS ON BONE IN VIVO. Nature. 1964 Nov 14;204:652–654. doi: 10.1038/204652a0. [DOI] [PubMed] [Google Scholar]
  2. Borgens R. B., Roederer E., Cohen M. J. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science. 1981 Aug 7;213(4508):611–617. doi: 10.1126/science.7256258. [DOI] [PubMed] [Google Scholar]
  3. Borgens R. B., Vanable J. W., Jr, Jaffe L. F. Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J Exp Zool. 1977 Jun;200(3):403–416. doi: 10.1002/jez.1402000310. [DOI] [PubMed] [Google Scholar]
  4. Bowles E. A., Allen N. S. A vibrating probe analysis of light-dependent transcellular currents in Acetabularia. Prog Clin Biol Res. 1986;210:113–121. [PubMed] [Google Scholar]
  5. Brighton C. T., Pollack S. R. Treatment of nonunion of the tibia with a capacitively coupled electrical field. J Trauma. 1984 Feb;24(2):153–155. doi: 10.1097/00005373-198402000-00012. [DOI] [PubMed] [Google Scholar]
  6. Ehrenberg B., Farkas D. L., Fluhler E. N., Lojewska Z., Loew L. M. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys J. 1987 May;51(5):833–837. doi: 10.1016/S0006-3495(87)83410-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farkas D. L., Korenstein R., Malkin S. Electrophotoluminescence and the electrical properties of the photosynthetic membrane. I. Initial kinetics and the charging capacitance of the membrane. Biophys J. 1984 Feb;45(2):363–373. doi: 10.1016/S0006-3495(84)84160-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbert D. L., Ehrenstein G. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J. 1969 Mar;9(3):447–463. doi: 10.1016/S0006-3495(69)86396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gross D., Loew L. M., Webb W. W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986 Aug;50(2):339–348. doi: 10.1016/S0006-3495(86)83467-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gross D., Williams W. S., Connor J. A. Theory of electromechanical effects in nerve. Cell Mol Neurobiol. 1983 Jun;3(2):89–111. doi: 10.1007/BF00735275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heinrich R., Gaestel M., Glaser R. The electric potential profile across the erythrocyte membrane. J Theor Biol. 1982 May 21;96(2):211–231. doi: 10.1016/0022-5193(82)90222-3. [DOI] [PubMed] [Google Scholar]
  12. Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
  13. Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
  14. Jaffe L. F., Poo M. M. Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool. 1979 Jul;209(1):115–128. doi: 10.1002/jez.1402090114. [DOI] [PubMed] [Google Scholar]
  15. Jaffe L. F., Woodruff R. I. Large electrical currents traverse developing Ceropia follicles. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1328–1332. doi: 10.1073/pnas.76.3.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kenner G. H., Gabrielson E. W., Lovell J. E., Marshall A. E., Williams W. S. Electrical modification of disuse osteoporosis. Calcif Tissue Res. 1975 Jul 25;18(2):111–117. doi: 10.1007/BF02546231. [DOI] [PubMed] [Google Scholar]
  17. McCloskey M. A., Liu Z. Y., Poo M. M. Lateral electromigration and diffusion of Fc epsilon receptors on rat basophilic leukemia cells: effects of IgE binding. J Cell Biol. 1984 Sep;99(3):778–787. doi: 10.1083/jcb.99.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDaniel R. V., McIntosh T. J. X-Ray Diffraction Studies of the Cholera Toxin receptor, G(M1). Biophys J. 1986 Jan;49(1):94–96. doi: 10.1016/s0006-3495(86)83606-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McDaniel R. V., Sharp K., Brooks D., McLaughlin A. C., Winiski A. P., Cafiso D., McLaughlin S. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory. Biophys J. 1986 Mar;49(3):741–752. doi: 10.1016/S0006-3495(86)83700-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGinnis M. E., Vanable J. W., Jr Voltage gradients in newt limb stumps. Prog Clin Biol Res. 1986;210:231–238. [PubMed] [Google Scholar]
  21. McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85–93. doi: 10.1016/S0006-3495(81)84838-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  23. Overall R., Jaffe L. F. Patterns of ionic current through Drosophila follicles and eggs. Dev Biol. 1985 Mar;108(1):102–119. doi: 10.1016/0012-1606(85)90013-2. [DOI] [PubMed] [Google Scholar]
  24. Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
  25. Robinson K. R. The responses of cells to electrical fields: a review. J Cell Biol. 1985 Dec;101(6):2023–2027. doi: 10.1083/jcb.101.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ryan T. A., Myers J., Holowka D., Baird B., Webb W. W. Molecular crowding on the cell surface. Science. 1988 Jan 1;239(4835):61–64. doi: 10.1126/science.2962287. [DOI] [PubMed] [Google Scholar]
  27. Sowers A. E., Hackenbrock C. R. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6246–6250. doi: 10.1073/pnas.78.10.6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Teissie J., Knutson V. P., Tsong T. Y., Lane M. D. Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science. 1982 Apr 30;216(4545):537–538. doi: 10.1126/science.7071601. [DOI] [PubMed] [Google Scholar]
  29. Webb W. W., Barak L. S., Tank D. W., Wu E. S. Molecular mobility on the cell surface. Biochem Soc Symp. 1981;(46):191–205. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES