Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jan;55(1):53–65. doi: 10.1016/S0006-3495(89)82780-8

Intracellular pH and cell-to-cell transmission in sheep Purkinje fibers.

M L Pressler 1
PMCID: PMC1330443  PMID: 2930825

Abstract

Intracellular pH (pHi) is a significant modifier of cell-to-cell communication in some tissues but its role is uncertain in heart tissue. The present studies examined the effect of cytosolic protons on electrotonic spread and conduction velocity in cardiac Purkinje fibers. Cable analysis provided values for internal longitudinal resistance (ri) and pH-selective microelectrodes monitored pHi during CO2 and HCO3- alterations. Resting fibers developed changes in ri that were proportional to intracellular free proton concentration ([H+]i) during CO2 changes at constant [HCO3-]. However, the effects on ri were small between pHi 6.9-7.8 and predicted only a 2.2% increase in ri per 10 nM increase in [H+]i. Other findings suggested that titration of cytosolic protons may not directly produce the changes in ri: (a) For an equal change in [H+]i, the effects on ri were roughly three times greater (6.8% increase per 10 nM rise in [H+]i) if bicarbonate was lost during CO2 changes. (b) pH-associated changes in ri were preceded by a time delay (1-5 min) producing hysteresis in the [H+]i-ri relation during successive perturbations. (c) The same CO2 variations modified the direction and magnitude of ri differently during pacing than at rest. The cumulative results suggest that the action of protons on ri in the heart may be subordinate to another regulator or mediated by another pH-dependent substance or reaction.

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brink P. R., Dewey M. M. Evidence for fixed charge in the nexus. Nature. 1980 May 8;285(5760):101–102. doi: 10.1038/285101a0. [DOI] [PubMed] [Google Scholar]
  2. Burt J. M. Block of intercellular communication: interaction of intracellular H+ and Ca2+. Am J Physiol. 1987 Oct;253(4 Pt 1):C607–C612. doi: 10.1152/ajpcell.1987.253.4.C607. [DOI] [PubMed] [Google Scholar]
  3. Cohen C. J., Fozzard H. A., Sheu S. S. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res. 1982 May;50(5):651–662. doi: 10.1161/01.res.50.5.651. [DOI] [PubMed] [Google Scholar]
  4. Dahl G., Isenberg G. Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol. 1980 Mar 31;53(1):63–75. doi: 10.1007/BF01871173. [DOI] [PubMed] [Google Scholar]
  5. De Mello W. C. Effect of intracellular injection of cAMP on the electrical coupling of mammalian cardiac cells. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1001–1007. doi: 10.1016/0006-291x(84)90873-8. [DOI] [PubMed] [Google Scholar]
  6. Fabiato A. Use of aequorin for the appraisal of the hypothesis of the release of calcium from the sarcoplasmic reticulum induced by a change of pH in skinned cardiac cells. Cell Calcium. 1985 Apr;6(1-2):95–108. doi: 10.1016/0143-4160(85)90037-5. [DOI] [PubMed] [Google Scholar]
  7. Flagg-Newton J. L., Dahl G., Loewenstein W. R. Cell junction and cyclic AMP: 1. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor. J Membr Biol. 1981;63(1-2):105–121. doi: 10.1007/BF01969452. [DOI] [PubMed] [Google Scholar]
  8. Flagg-Newton J., Simpson I., Loewenstein W. R. Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science. 1979 Jul 27;205(4404):404–407. doi: 10.1126/science.377490. [DOI] [PubMed] [Google Scholar]
  9. Haiech J., Klee C. B., Demaille J. G. Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry. 1981 Jun 23;20(13):3890–3897. doi: 10.1021/bi00516a035. [DOI] [PubMed] [Google Scholar]
  10. Hertzberg E. L., Spray D. C., Bennett M. V. Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2412–2416. doi: 10.1073/pnas.82.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huguenin F., Reber W., Zeuthen T. Carbon dioxide, membrane potential and intracellular potassium activity in frog skeletal muscle. J Physiol. 1980 Jun;303:139–152. doi: 10.1113/jphysiol.1980.sp013276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kagiyama Y., Hill J. L., Gettes L. S. Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circ Res. 1982 Nov;51(5):614–623. doi: 10.1161/01.res.51.5.614. [DOI] [PubMed] [Google Scholar]
  13. Kurachi Y. The effects of intracellular protons on the electrical activity of single ventricular cells. Pflugers Arch. 1982 Sep;394(3):264–270. doi: 10.1007/BF00589102. [DOI] [PubMed] [Google Scholar]
  14. Levin D. N., Fozzard H. A. A cleft model for cardiac Purkinje strands. Biophys J. 1981 Mar;33(3):383–408. doi: 10.1016/S0006-3495(81)84902-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  16. Marrannes R., de Hemptinne A., Leusen I. pH aspects of transient changes in conduction velocity in isolated heart fibers after partial replacement of chloride with organic anions. Pflugers Arch. 1981 Mar;389(3):199–209. doi: 10.1007/BF00584780. [DOI] [PubMed] [Google Scholar]
  17. Maurer P., Weingart R. Cell pairs isolated from adult guinea pig and rat hearts: effects of [Ca2+]i on nexal membrane resistance. Pflugers Arch. 1987 Aug;409(4-5):394–402. doi: 10.1007/BF00583793. [DOI] [PubMed] [Google Scholar]
  18. Noma A., Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol. 1987 Jan;382:193–211. doi: 10.1113/jphysiol.1987.sp016363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peracchia C. Communicating junctions and calmodulin: inhibition of electrical uncoupling in Xenopus embryo by calmidazolium. J Membr Biol. 1984;81(1):49–58. doi: 10.1007/BF01868809. [DOI] [PubMed] [Google Scholar]
  20. Pressler M. L. Cable analysis in quiescent and active sheep Purkinje fibres. J Physiol. 1984 Jul;352:739–757. doi: 10.1113/jphysiol.1984.sp015319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pressler M. L., Elharrar V., Bailey J. C. Effects of extracellular calcium ions, verapamil, and lanthanum on active and passive properties of canine cardiac purkinje fibers. Circ Res. 1982 Nov;51(5):637–651. doi: 10.1161/01.res.51.5.637. [DOI] [PubMed] [Google Scholar]
  22. Pressler M. L. Phasic changes in intracellular pH during action potentials of sheep Purkinje fibres. Pflugers Arch. 1988 Jan;411(1):69–75. doi: 10.1007/BF00581648. [DOI] [PubMed] [Google Scholar]
  23. Reber W. R., Weingart R. Ungulate cardiac purkinje fibres: the influence of intracellular pH on the electrical cell-to-cell coupling. J Physiol. 1982 Jul;328:87–104. doi: 10.1113/jphysiol.1982.sp014254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saez J. C., Spray D. C., Nairn A. C., Hertzberg E., Greengard P., Bennett M. V. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2473–2477. doi: 10.1073/pnas.83.8.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shibata Y., Page E. Gap junctional structure in intact and cut sheep cardiac Purkinje fibers: a freeze-fracture study of Ca2+-induced resealing. J Ultrastruct Res. 1981 May;75(2):195–204. doi: 10.1016/s0022-5320(81)80135-9. [DOI] [PubMed] [Google Scholar]
  26. Spray D. C., Bennett M. V. Physiology and pharmacology of gap junctions. Annu Rev Physiol. 1985;47:281–303. doi: 10.1146/annurev.ph.47.030185.001433. [DOI] [PubMed] [Google Scholar]
  27. Spray D. C., Harris A. L., Bennett M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science. 1981 Feb 13;211(4483):712–715. doi: 10.1126/science.6779379. [DOI] [PubMed] [Google Scholar]
  28. Spray D. C., Stern J. H., Harris A. L., Bennett M. V. Gap junctional conductance: comparison of sensitivities to H and Ca ions. Proc Natl Acad Sci U S A. 1982 Jan;79(2):441–445. doi: 10.1073/pnas.79.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TASAKI I., HAGIWARA S. Capacity of muscle fiber membrane. Am J Physiol. 1957 Mar;188(3):423–429. doi: 10.1152/ajplegacy.1957.188.3.423. [DOI] [PubMed] [Google Scholar]
  30. Turin L., Warner A. E. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres. J Physiol. 1980 Mar;300:489–504. doi: 10.1113/jphysiol.1980.sp013174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vaughan-Jones R. D., Lederer W. J., Eisner D. A. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature. 1983 Feb 10;301(5900):522–524. doi: 10.1038/301522a0. [DOI] [PubMed] [Google Scholar]
  32. Veenstra R. D., DeHaan R. L. Cardiac gap junction channel activity in embryonic chick ventricle cells. Am J Physiol. 1988 Jan;254(1 Pt 2):H170–H180. doi: 10.1152/ajpheart.1988.254.1.H170. [DOI] [PubMed] [Google Scholar]
  33. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walton M. K., Fozzard H. A. The conducted action potential. Models and comparison to experiments. Biophys J. 1983 Oct;44(1):9–26. doi: 10.1016/S0006-3495(83)84273-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Warner A. E., Guthrie S. C., Gilula N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):127–131. doi: 10.1038/311127a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES