Abstract
The orientation and temperature dependence (4.2-2.5 K) of electron paramagnetic resonance (EPR) power saturation and spin-lattice relaxation rate, and the orientation dependence of signal linewidth, were measured in single crystals of the aquo complex of ferric sperm whale skeletal muscle myoglobin. The spin-packet linewidth was found to be temperature independent and to vary by a factor of seven within the heme plane. An analysis is presented which enables one to arrive at (a) hyperfine component line-widths and, from the in-plane angular variation of the latter, at (b) the widths of distributions in energy differences between low-lying electronic levels and (c) the angular spread in the in-plane principal g-directions. The values of the energy level distributions in crystals obtained from the measurements and analysis reported here are compared with those obtained by a different method for the same protein complex in frozen solution. The spread in the rhombic energy splitting is significantly greater in solution than in the crystal.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bialek W., Goldstein R. F. Do vibrational spectroscopies uniquely describe protein dynamics? The case for myoglobin. Biophys J. 1985 Dec;48(6):1027–1044. doi: 10.1016/S0006-3495(85)83865-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brill A. S., Fiamingo F. G., Hampton D. A. EPR characterization of alcohol complexes of ferric myoglobin and hemoglobin. J Inorg Biochem. 1986 Oct-Nov;28(2-3):137–143. doi: 10.1016/0162-0134(86)80077-0. [DOI] [PubMed] [Google Scholar]
- Brill A. S., Hampton D. A. Quantitative evaluation of contributions to electron paramagnetic resonance line widths in ferric hemoglobin single crystals. Biophys J. 1979 Feb;25(2 Pt 1):313–322. doi: 10.1016/s0006-3495(79)85294-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brill AS, Fiamingo FG, Hampton DA, Levin PD, Thorkildsen R. Density of low-energy vibrational states in a protein solution. Phys Rev Lett. 1985 Apr 22;54(16):1864–1867. doi: 10.1103/PhysRevLett.54.1864. [DOI] [PubMed] [Google Scholar]
- Eisenberger P., Pershan P. S. Electron spin resonance of met-myoglobin: field dependence of g. J Chem Phys. 1966 Oct 15;45(8):2832–2835. doi: 10.1063/1.1728035. [DOI] [PubMed] [Google Scholar]
- Fiamingo F. G., Thorkildsen R., Brill A. S. Structural distribution and rotational disorder in myoglobin crystals. Biophys J. 1980 Oct;32(1):634–635. doi: 10.1016/S0006-3495(80)85001-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampton D. A., Brill A. S. Crystalline state disorder and hyperfine component line widths in ferric hemoglobin chains. Biophys J. 1979 Feb;25(2 Pt 1):301–311. doi: 10.1016/s0006-3495(79)85293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helcké G. A., Ingram D. J., Slade E. F. Electron resonance studies of haemoglobin derivatives. 3. Line-width and g-value measurements of acid-met myoglobin and of met myoglobin azide derivatives. Proc R Soc Lond B Biol Sci. 1968 Feb 27;169(1016):275–288. doi: 10.1098/rspb.1968.0011. [DOI] [PubMed] [Google Scholar]
- Hori H. Analysis of the principal g-tensors in single crystals of ferrimyoglobin complexes. Biochim Biophys Acta. 1971 Nov 19;251(2):227–235. doi: 10.1016/0005-2795(71)90106-1. [DOI] [PubMed] [Google Scholar]
- Isaacson R. Use of field modulation with boxcar integrator to measure relaxation time in electron spin resonance experiments. J Sci Instrum. 1968 Nov;1(11):1137–1139. doi: 10.1088/0022-3735/1/11/425. [DOI] [PubMed] [Google Scholar]
- Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
