Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Feb;55(2):327–330. doi: 10.1016/S0006-3495(89)82808-5

Thermodynamic parameters for the binding of divalent cations to gramicidin A incorporated into a lipid environment by Tl-205 nuclear magnetic resonance.

J F Hinton 1, J Q Fernandez 1, D C Shungu 1, F S Millett 1
PMCID: PMC1330474  PMID: 2469486

Abstract

Thermodynamic parameters, enthalpy and entropy, for the binding of the divalent cations, Mg+2, Ca+2, Sr+2, Ba+2, and Cd+2, to gramicidin A, incorporated into lysophosphatidylcholine, have been determined using a combination of Tl-205 nuclear magnetic resonance spectroscopy and competition binding. The binding process is thermodynamically driven by the enthalpy and not the entropy. The enthalpy values are related to the process involving the transfer of cations from an aqueous environment to an amide environment. A comparison is made between the thermodynamic parameters for the binding of monovalent and divalent cations to gramicidin A to illustrate the channel blocking ability of the divalent cations with respect to monovalent cation transport.

Full text

PDF
327

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamberg E., Noda K., Gross E., Läuger P. Single-channel parameters of gramicidin A,B, and C. Biochim Biophys Acta. 1976 Jan 21;419(2):223–228. doi: 10.1016/0005-2736(76)90348-5. [DOI] [PubMed] [Google Scholar]
  2. Forsén S., Lindman B. Ion binding in biological systems as studied by NMR spectroscopy. Methods Biochem Anal. 1981;27:289–486. doi: 10.1002/9780470110478.ch5. [DOI] [PubMed] [Google Scholar]
  3. Hinton J. F., Fernandez J. Q., Shungu D. C., Whaley W. L., Koeppe R. E., 2nd, Millett F. S. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. Biophys J. 1988 Sep;54(3):527–533. doi: 10.1016/S0006-3495(88)82985-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hinton J. F., Koeppe R. E., 2nd, Shungu D., Whaley W. L., Paczkowski J. A., Millett F. S. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy. Biophys J. 1986 Feb;49(2):571–577. doi: 10.1016/S0006-3495(86)83668-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinton J. F., Whaley W. L., Shungu D., Koeppe R. E., 2nd, Millett F. S. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy. Biophys J. 1986 Sep;50(3):539–544. doi: 10.1016/S0006-3495(86)83492-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hinton J. F., Young G., Millett F. S. Thallous ion interaction with gramicidin incorporated in micelles studied by thallium-205 nuclear magnetic resonance. Biochemistry. 1982 Feb 16;21(4):651–654. doi: 10.1021/bi00533a009. [DOI] [PubMed] [Google Scholar]
  7. Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
  8. Koeppe R. E., 2nd, Paczkowski J. A., Whaley W. L. Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry. 1985 Jun 4;24(12):2822–2826. doi: 10.1021/bi00333a002. [DOI] [PubMed] [Google Scholar]
  9. Mueller P., Rudin D. O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun. 1967 Feb 21;26(4):398–404. doi: 10.1016/0006-291x(67)90559-1. [DOI] [PubMed] [Google Scholar]
  10. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  11. Pullman A. Energy profiles in the gramicidin A channel. Q Rev Biophys. 1987 Nov;20(3-4):173–200. doi: 10.1017/s0033583500004170. [DOI] [PubMed] [Google Scholar]
  12. Spisni A., Pasquali-Ronchetti I., Casali E., Lindner L., Cavatorta P., Masotti L., Urry D. W. Supramolecular organization of lysophosphatidylcholine-packaged Gramicidin A. Biochim Biophys Acta. 1983 Jul 13;732(1):58–68. doi: 10.1016/0005-2736(83)90186-4. [DOI] [PubMed] [Google Scholar]
  13. Urry D. W., Spisni A., Khaled A. Characterization of micellar-packaged gramicidin A channels. Biochem Biophys Res Commun. 1979 Jun 13;88(3):940–949. doi: 10.1016/0006-291x(79)91499-2. [DOI] [PubMed] [Google Scholar]
  14. Urry D. W., Trapane T. L., Walker J. T., Prasad K. U. On the relative lipid membrane permeability of Na+ and Ca2+. A physical basis for the messenger role of Ca2+. J Biol Chem. 1982 Jun 25;257(12):6659–6661. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES