Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 May;55(5):957–964. doi: 10.1016/S0006-3495(89)82894-2

On the position of the hydro-phobic/philic boundary in lipid bilayers

James R Scherer
PMCID: PMC1330532  PMID: 19431741

Abstract

The sensitivity of calculated structural dimensions of hydrated lipids to the position of the hydrophobic/hydrophilic boundary is reviewed. The position of this boundary is critical in determining the extent of hydration and location of water in the bilayer. A calculation of the dimensions of the hydrophilic and hydrophobic parts of the phosphatidylcholine and ethanolamine bilayer from literature values of the x-ray long spacing shows that the choice of boundary in phospholipids is not arbitrary and is best placed at the average position of the first CH2 group in the hydrocarbon chains. Calculated dimensions of the hydrocarbon core and the water accessible regions agree with neutron and x-ray diffraction measurements. Hydration differences between phosphatidylcholines and phosphatidylethanolamines are readily explained from derived estimates of the layers of water which cover these headgroups.

Full text

PDF
957

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büldt G., Gally H. U., Seelig A., Seelig J., Zaccai G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature. 1978 Jan 12;271(5641):182–184. doi: 10.1038/271182a0. [DOI] [PubMed] [Google Scholar]
  2. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  3. Cowley A. C., Fuller N. L., Rand R. P., Parsegian V. A. Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry. 1978 Jul 25;17(15):3163–3168. doi: 10.1021/bi00608a034. [DOI] [PubMed] [Google Scholar]
  4. Dill K. A., Stigter D. Lateral interactions among phosphatidylcholine and phosphatidylethanolamine head groups in phospholipid monolayers and bilayers. Biochemistry. 1988 May 3;27(9):3446–3453. doi: 10.1021/bi00409a048. [DOI] [PubMed] [Google Scholar]
  5. Hauser H., Pascher I., Pearson R. H., Sundell S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta. 1981 Jun 16;650(1):21–51. doi: 10.1016/0304-4157(81)90007-1. [DOI] [PubMed] [Google Scholar]
  6. Janiak M. J., Small D. M., Shipley G. G. Interactions of cholesterol esters with phospholipids: cholesteryl myristate and dimyristoyl lecithin. J Lipid Res. 1979 Feb;20(2):183–199. [PubMed] [Google Scholar]
  7. Janiak M. J., Small D. M., Shipley G. G. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979 Jul 10;254(13):6068–6078. [PubMed] [Google Scholar]
  8. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LeNeveu D. M., Rand R. P. Measurement and modification of forces between lecithin bilayers. Biophys J. 1977 May;18(2):209–230. doi: 10.1016/S0006-3495(77)85608-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lis L. J., Lis W. T., Parsegian V. A., Rand R. P. Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry. 1981 Mar 31;20(7):1771–1777. doi: 10.1021/bi00510a010. [DOI] [PubMed] [Google Scholar]
  11. Lis L. J., Parsegian V. A., Rand R. P. Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry. 1981 Mar 31;20(7):1761–1770. doi: 10.1021/bi00510a009. [DOI] [PubMed] [Google Scholar]
  12. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  13. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  14. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  15. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reiss-Husson F. Structure des phases liquide-cristallines de différents phospholipides, monoglycérides, sphingolipides, anhydres ou en présence d'eau. J Mol Biol. 1967 May 14;25(3):363–382. doi: 10.1016/0022-2836(67)90192-1. [DOI] [PubMed] [Google Scholar]
  18. Scherer J. R. The partial molar volume of water in biological membranes. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7938–7942. doi: 10.1073/pnas.84.22.7938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seddon J. M., Cevc G., Kaye R. D., Marsh D. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry. 1984 Jun 5;23(12):2634–2644. doi: 10.1021/bi00307a015. [DOI] [PubMed] [Google Scholar]
  20. Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
  21. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  22. Taylor R. P., Huang C. H., Broccoli A. V., Chun J. K. Nuclear magnetic resonance studies of amphiphile hydration. Effects of the gel-to-liquid crystalline phase transition on the hydration of dioleoyl lecithin. Arch Biochem Biophys. 1978 Apr 15;187(1):197–200. doi: 10.1016/0003-9861(78)90023-1. [DOI] [PubMed] [Google Scholar]
  23. Torbet J., Wilkins M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol. 1976 Oct 21;62(2):447–458. doi: 10.1016/0022-5193(76)90129-6. [DOI] [PubMed] [Google Scholar]
  24. White S. H., Jacobs R. E., King G. I. Partial specific volumes of lipid and water in mixtures of egg lecithin and water. Biophys J. 1987 Oct;52(4):663–665. doi: 10.1016/S0006-3495(87)83259-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. White S. H., King G. I. Molecular packing and area compressibility of lipid bilayers. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6532–6536. doi: 10.1073/pnas.82.19.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wilkinson D. A., Nagle J. F. Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry. 1981 Jan 6;20(1):187–192. doi: 10.1021/bi00504a031. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES