Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Apr;55(4):789–792. doi: 10.1016/S0006-3495(89)82877-2

Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.

V V Kumar 1, B Malewicz 1, W J Baumann 1
PMCID: PMC1330562  PMID: 2720071

Abstract

Sonication of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC, up to approximately 30 mol %) produces small unilamellar vesicles (SUV, 250-265 A diameter). Phosphorus-31 NMR of the POPC/lysoPC vesicles gives rise to four distinct peaks for POPC and lysoPC in the outer and in the inner bilayer leaflet which can be used to localize and quantify the phospholipids in both vesicle shells. Addition of paramagnetic ions (3 mM Pr3+) enhances outside/inside chemical shift differences and allows monitoring of membrane integrity by the absence of Pr3+ in the vesicle interior. 31P NMR shows that lysoPC in these highly curved POPC/lysoPC vesicles prefers the outer bilayer leaflet. LysoPC incorporation into POPC SUV furthermore causes a substantial and concentration-dependent decrease in spin-spin relaxations (T*2) of the outside POPC phosphorus signals from 55 ms for pure POPC vesicles (v1/2, 5.8 Hz) to 29.5 ms (v1/2, 10.8 Hz) for POPC/lysoPC vesicles containing 25 mol % lysoPC. Our findings are consistent with the idea of a cone-shaped lysoPC molecule which, for geometric reasons, is preferentially accommodated in the outer bilayer leaflet. LysoPC incorporation into POPC SUV restricts POPC headgroup motion and tightens phospholipid packing, but only in the outer bilayer shell.

Full text

PDF
789

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANGHAM A. D., HORNE R. W. NEGATIVE STAINING OF PHOSPHOLIPIDS AND THEIR STRUCTURAL MODIFICATION BY SURFACE-ACTIVE AGENTS AS OBSERVED IN THE ELECTRON MICROSCOPE. J Mol Biol. 1964 May;8:660–668. doi: 10.1016/s0022-2836(64)80115-7. [DOI] [PubMed] [Google Scholar]
  2. Berden J. A., Cullis P. R., Hoult D. I., McLaughlin A. C., Radda G. K., Richards R. E. Frequency dependence of 31P NMR linewidths in sonicated phospholipid vesicles: effects of chemical shift anisotropy. FEBS Lett. 1974 Sep 15;46(1):55–58. doi: 10.1016/0014-5793(74)80333-9. [DOI] [PubMed] [Google Scholar]
  3. Brasure E. B., Henderson T. O., Glonek T., Pattnaik N. M., Scanu A. M. Action of alpha-phospholipase A2 on human serum high density lipoprotein-3: kinetic study of the reaction by 31P nuclear magnetic resonance spectroscopy. Biochemistry. 1978 Sep 19;17(19):3934–3938. doi: 10.1021/bi00612a008. [DOI] [PubMed] [Google Scholar]
  4. Carnie S., Israelachvili J. N., Pailthorpe B. A. Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim Biophys Acta. 1979 Jul 5;554(2):340–357. doi: 10.1016/0005-2736(79)90375-4. [DOI] [PubMed] [Google Scholar]
  5. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Haydon D. A., Taylor J. The stability and properties of bimolecular lipid leaflets in aqueous solutions. J Theor Biol. 1963 May;4(3):281–296. doi: 10.1016/0022-5193(63)90007-9. [DOI] [PubMed] [Google Scholar]
  7. Huang C., Mason J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci U S A. 1978 Jan;75(1):308–310. doi: 10.1073/pnas.75.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  9. Huang C., Thompson T. E. Preparation of homogeneous, single-walled phosphatidylcholine vesicles. Methods Enzymol. 1974;32:485–489. doi: 10.1016/0076-6879(74)32048-4. [DOI] [PubMed] [Google Scholar]
  10. Kumar V. V., Anderson W. H., Thompson E. W., Malewicz B., Baumann W. J. Asymmetry of lysophosphatidylcholine/cholesterol vesicles is sensitive to cholesterol modulation. Biochemistry. 1988 Jan 12;27(1):393–398. doi: 10.1021/bi00401a059. [DOI] [PubMed] [Google Scholar]
  11. Kumar V. V., Baumann W. J. Bilayer asymmetry in lysophosphatidylcholine/cholesterol (1:1) vesicles. A phosphorus-31 NMR study. Biochem Biophys Res Commun. 1986 Aug 29;139(1):25–30. doi: 10.1016/s0006-291x(86)80074-2. [DOI] [PubMed] [Google Scholar]
  12. Roberts M. F., Adamich M., Robson R. J., Dennis E. A. Phospholipid activation of cobra venom phospholipase A2. 1. Lipid--lipid or lipid--enzyme interaction. Biochemistry. 1979 Jul 24;18(15):3301–3308. doi: 10.1021/bi00582a016. [DOI] [PubMed] [Google Scholar]
  13. de Kruyff B., van den Besselaar A. M., van Deenen L. L. Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determinied by 13C-NMR using (N-13CH3)-enriched lipids. Biochim Biophys Acta. 1977 Mar 17;465(3):443–453. doi: 10.1016/0005-2736(77)90263-2. [DOI] [PubMed] [Google Scholar]
  14. van den Besselaar A. M., van den Bosch H., van Deenen L. L. Transbilayer distribution and movement of lysophosphatidylcholine in liposomal membranes. Biochim Biophys Acta. 1977 Mar 17;465(3):454–465. doi: 10.1016/0005-2736(77)90264-4. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES