Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jun;55(6):1041–1052. doi: 10.1016/S0006-3495(89)82903-0

How electrolyte shielding influences the electrical potential in transmembrane ion channels.

P C Jordan 1, R J Bacquet 1, J A McCammon 1, P Tran 1
PMCID: PMC1330572  PMID: 2475181

Abstract

The electrical potential due to fixed charge distributions is strongly altered in the vicinity of a membrane and notably dependent on aqueous electrolyte concentration. We present an efficient way to solve the nonlinear Poisson-Boltzmann equation applicable to general cylindrically symmetric dielectric geometries. It generalizes Gouy-Chapman theory to systems containing transmembrane channels. The method is applied to three channel systems: gramicidin, gap junction, and porin. We find that for a long, narrow channel such as gramicidin concentration variation has little influence on the electrical image barrier to ion permeation. However, electrolyte shielding reduces the image induced contribution to the energy required for multiple occupancy. In addition, the presence of electrolyte significantly affects the voltage profile due to an applied potential, substantially compressing the electric field to the immediate vicinity of the pore itself. In the large diameter channels, where bulk electrolyte may be assumed to enter the pore, the electrolyte greatly reduces the image barrier to ion permeation. At physiological ionic strengths this barrier is negligible and the channel may be readily multiply occupied. At all ionic strengths considered (l greater than 0.005 M) the image barrier saturates rapidly and is essentially constant more than one channel radius from the entrance to the pore. At lower ionic strengths (l less than 0.016 M) there are noticeable (greater than 20 mV) energy penalties associated with multiple occupancy.

Full text

PDF
1041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., Ishii J., Nakae T. Determination of ion permeability through the channels made of porins from the outer membrane of Salmonella typhimurium in lipid bilayer membranes. J Membr Biol. 1980 Aug 21;56(1):19–29. doi: 10.1007/BF01869348. [DOI] [PubMed] [Google Scholar]
  2. Benz R. Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem. 1985;19(2):145–190. doi: 10.3109/10409238509082542. [DOI] [PubMed] [Google Scholar]
  3. Dani J. A. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys J. 1986 Mar;49(3):607–618. doi: 10.1016/S0006-3495(86)83688-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flagg-Newton J., Simpson I., Loewenstein W. R. Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science. 1979 Jul 27;205(4404):404–407. doi: 10.1126/science.377490. [DOI] [PubMed] [Google Scholar]
  5. Garavito R. M., Jenkins J., Jansonius J. N., Karlsson R., Rosenbusch J. P. X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J Mol Biol. 1983 Feb 25;164(2):313–327. doi: 10.1016/0022-2836(83)90079-7. [DOI] [PubMed] [Google Scholar]
  6. Jordan P. C. Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels. Biophys J. 1984 Jun;45(6):1091–1100. doi: 10.1016/S0006-3495(84)84257-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jordan P. C. Electrostatic modeling of ion pores. Energy barriers and electric field profiles. Biophys J. 1982 Aug;39(2):157–164. doi: 10.1016/S0006-3495(82)84503-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jordan P. C. Energy barriers for passage of ions through channels. Exact solution of two electrostatic problems. Biophys Chem. 1981 Jun;13(3):203–212. doi: 10.1016/0301-4622(81)80002-6. [DOI] [PubMed] [Google Scholar]
  9. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  10. Levitt D. G., Decker E. R. Electrostatic radius of the gramicidin channel determined from voltage dependence of H+ ion conductance. Biophys J. 1988 Jan;53(1):33–38. doi: 10.1016/S0006-3495(88)83063-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitt D. G. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys J. 1978 May;22(2):209–219. doi: 10.1016/S0006-3495(78)85485-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levitt D. G. Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. Annu Rev Biophys Biophys Chem. 1986;15:29–57. doi: 10.1146/annurev.bb.15.060186.000333. [DOI] [PubMed] [Google Scholar]
  13. Levitt D. G. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. Biophys J. 1985 Jul;48(1):19–31. doi: 10.1016/S0006-3495(85)83757-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. V. Structural chemistry inferred from X-ray diffraction measurements on sucrose accessibility and trypsin susceptibility. J Mol Biol. 1984 Apr 15;174(3):449–481. doi: 10.1016/0022-2836(84)90331-0. [DOI] [PubMed] [Google Scholar]
  15. Peskoff A., Bers D. M. Electrodiffusion of ions approaching the mouth of a conducting membrane channel. Biophys J. 1988 Jun;53(6):863–875. doi: 10.1016/S0006-3495(88)83167-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roos N., Benz R., Brdiczka D. Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria. Biochim Biophys Acta. 1982 Apr 7;686(2):204–214. doi: 10.1016/0005-2736(82)90114-6. [DOI] [PubMed] [Google Scholar]
  17. Schwarzmann G., Wiegandt H., Rose B., Zimmerman A., Ben-Haim D., Loewenstein W. R. Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science. 1981 Jul 31;213(4507):551–553. doi: 10.1126/science.7244653. [DOI] [PubMed] [Google Scholar]
  18. Unwin P. N., Zampighi G. Structure of the junction between communicating cells. Nature. 1980 Feb 7;283(5747):545–549. doi: 10.1038/283545a0. [DOI] [PubMed] [Google Scholar]
  19. Vayl I. S., Jordan P. C. Electrostatic modeling of ion pores. Multipolar sources. Biophys Chem. 1987 Jul;27(1):7–13. doi: 10.1016/0301-4622(87)80042-x. [DOI] [PubMed] [Google Scholar]
  20. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES