Abstract
High-performance liquid chromatography (HPLC) procedures provide size-exclusion chromatography with sufficient speed that the elution characteristics of mixtures of interacting macromolecules are potentially determined by the kinetics of association and dissociation. However, few studies have yet addressed the consequences of interaction kinetics on HPLC analyses or evaluated the potential application of HPLC methods for the qualitative and quantitative interpretation of macromolecular interaction kinetics. An earlier simulation of small-zone chromatography of interacting molecules (Stevens, F. J. 1986. Biochemistry. 25:981-993) has been modified to incorporate the effects of association/dissociation kinetics on elution behavior. The previous assumption of instantaneous equilibration has been replaced by explicit calculation of partial relaxation of complexed and free constituent mixtures during each iteration of the simulation. In addition, a stochastically based formulation has been introduced to determine a velocity probability distribution that emulates the partial intermixing of free and complexed pools during the iteration cycle. The simulation generates bimodal elution profiles representing stable complexed and free components of mixtures for which interaction is characterized by slow kinetics relative to chromatography run times. For mixtures with rapid kinetics, a single-asymmetric peak results. When tested with a large-zone sample such that a plateau of stable concentration is generated, the simulation reproduces previous characterizations based on evaluations of solute continuity equations. Therefore, HPLC may, in many cases be an appropriate basis for techniques by which to evaluate kinetic and affinity characteristics of interacting biomolecules.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ACKERS G. K. MOLECULAR EXCLUSION AND RESTRICTED DIFFUSION PROCESSES IN MOLECULAR-SIEVE CHROMATOGRAPHY. Biochemistry. 1964 May;3:723–730. doi: 10.1021/bi00893a021. [DOI] [PubMed] [Google Scholar]
- ACKERS G. K., THOMPSON T. E. DETERMINATION OF STOICHIOMETRY AND EQUILIBRIUM CONSTANTS FOR REVERSIBLY ASSOCIATING SYSTEMS BY MOLECULAR SIEVE CHROMATOGRAPHY. Proc Natl Acad Sci U S A. 1965 Feb;53:342–349. doi: 10.1073/pnas.53.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudin-Chich V., Marden M., Wajcman H. Investigation of the tetramer-dimer equilibrium in haemoglobin solutions by high-performance size-exclusion chromatography on a diol column. J Chromatogr. 1988 Mar 11;437(1):193–201. doi: 10.1016/s0021-9673(00)90382-0. [DOI] [PubMed] [Google Scholar]
- Cann J. R., Goad W. B. Theory of sedimentation of ligand-mediated dimerization. Arch Biochem Biophys. 1972 Dec;153(2):603–609. doi: 10.1016/0003-9861(72)90379-7. [DOI] [PubMed] [Google Scholar]
- Cann J. R., Kegeles G. Theory of sedimentation for kinetically controlled dimerization reactions. Biochemistry. 1974 Apr 23;13(9):1868–1874. doi: 10.1021/bi00706a015. [DOI] [PubMed] [Google Scholar]
- Cann J. R., Oates D. C. Theory of electrophoresis and sedimentation for some kinetically controlled interactions. Biochemistry. 1973 Mar 13;12(6):1112–1119. doi: 10.1021/bi00730a015. [DOI] [PubMed] [Google Scholar]
- Cann J. R., York E. J., Stewart J. M., Vera J. C., Maccioni R. B. Small zone gel chromatography of interacting systems: theoretical and experimental evaluation of elution profiles for kinetically controlled macromolecule-ligand reactions. Anal Biochem. 1988 Dec;175(2):462–473. doi: 10.1016/0003-2697(88)90570-2. [DOI] [PubMed] [Google Scholar]
- Cox D. J. Computer simulation of sedimentation in the ultracentrifuge. 3. Concentration-dependent sedimentation. Arch Biochem Biophys. 1967 Mar;119(1):230–239. doi: 10.1016/0003-9861(67)90450-x. [DOI] [PubMed] [Google Scholar]
- Cox D. J. Computer simulation of sedimentation in the ultracentrifuge. IV. Velocity sedimentation of self-associating solutes. Arch Biochem Biophys. 1969 Jan;129(1):106–123. doi: 10.1016/0003-9861(69)90157-x. [DOI] [PubMed] [Google Scholar]
- Cox D. J. Computer simulation of sedimentation in the ultracentrifuge. V. Ideal and non-ideal monomer-trimer systems. Arch Biochem Biophys. 1971 Feb;142(2):514–526. doi: 10.1016/0003-9861(71)90515-7. [DOI] [PubMed] [Google Scholar]
- Denizot F. C., Delaage M. A. Statistical theory of chromatography: new outlooks for affinity chromatography. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4840–4843. doi: 10.1073/pnas.72.12.4840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo S., Hayashi H., Wada A. Affinity chromatography without immobilized ligands; a new method for studying macromolecular interactions using high-performance liquid chromatography. Anal Biochem. 1982 Aug;124(2):372–379. doi: 10.1016/0003-2697(82)90054-9. [DOI] [PubMed] [Google Scholar]
- Endo S., Wada A. Theoretical and experimental studies on zone-interference chromatography as a new method for determining macromolecular kinetic constants. Biophys Chem. 1983 Nov;18(4):291–301. doi: 10.1016/0301-4622(83)80042-8. [DOI] [PubMed] [Google Scholar]
- Frankel A. D., Ackers G. K., Smith H. O. Measurement of DNA-protein equilibria using gel chromatography: application to the HinfI restriction endonuclease. Biochemistry. 1985 Jun 4;24(12):3049–3054. doi: 10.1021/bi00333a037. [DOI] [PubMed] [Google Scholar]
- Froese A. Kinetic and equilibrium studies on 2,4-Dinitrophenyl hapten-antibody systems. Immunochemistry. 1968 May;5(3):253–264. doi: 10.1016/0019-2791(68)90070-0. [DOI] [PubMed] [Google Scholar]
- HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
- Kegeles G., Cann J. R. Kinetically controlled mass transport of associating-dissociating macromolecules. Methods Enzymol. 1978;48:248–270. doi: 10.1016/s0076-6879(78)48014-0. [DOI] [PubMed] [Google Scholar]
- Nimmo I. A., Bauermeister A. A theoretical analysis of the use of zonal gel filtration in the detection and purification of protein-ligand complexes. Biochem J. 1978 Feb 1;169(2):437–440. doi: 10.1042/bj1690437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima G., Uchiyama H., Nagasawa K. A new method for determining the dissociation constant between macromolecules by gel permeation. Anal Biochem. 1981 Mar 1;111(2):366–371. doi: 10.1016/0003-2697(81)90574-1. [DOI] [PubMed] [Google Scholar]
- Pontarotti P. A., Rahmani R., Martin M., Barbet J. Monoclonal antibodies to antitumor Vinca alkaloids: thermodynamics and kinetics. Mol Immunol. 1985 Mar;22(3):277–284. doi: 10.1016/0161-5890(85)90162-2. [DOI] [PubMed] [Google Scholar]
- Stevens F. J. Analysis of protein-protein interaction by simulation of small-zone size-exclusion chromatography: application to an antibody-antigen association. Biochemistry. 1986 Mar 11;25(5):981–993. doi: 10.1021/bi00353a006. [DOI] [PubMed] [Google Scholar]
- Stevens F. J., Carperos W. E., Monafo W. J., Greenspan N. S. Size-exclusion HPLC analysis of epitopes. J Immunol Methods. 1988 Apr 6;108(1-2):271–278. doi: 10.1016/0022-1759(88)90429-2. [DOI] [PubMed] [Google Scholar]
- Stevens F. J., Schiffer M. Computer simulation of protein self-association during small-zone gel filtration. Estimation of equilibrium constants. Biochem J. 1981 Apr 1;195(1):213–219. doi: 10.1042/bj1950213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens F. J., Westholm F. A., Solomon A., Schiffer M. Self-association of human immunoglobulin kappa I light chains: role of the third hypervariable region. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1144–1148. doi: 10.1073/pnas.77.2.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINZOR D. J., SCHERAGA H. A. STUDIES OF CHEMICALLY REACTING SYSTEMS ON SEPHADEX. I. CHROMATOGRAPHIC DEMONSTRATION OF THE GILBERT THEORY. Biochemistry. 1963 Nov-Dec;2:1263–1267. doi: 10.1021/bi00906a016. [DOI] [PubMed] [Google Scholar]
- Zimmerman J. K., Ackers G. K. Molecular sieve studies of interacting protein systems. VI. Effects of axial dispersion on boundary profiles of associating macromolecules. J Biol Chem. 1971 Feb 25;246(4):1078–1087. [PubMed] [Google Scholar]
- Zimmerman J. K., Ackers G. K. Molecular sieve studies of interacting protein systems. X. Behavior of small zone profiles for reversibly self-associating solutes. J Biol Chem. 1971 Dec 10;246(23):7289–7292. [PubMed] [Google Scholar]
- Zimmerman J. K., Cox D. J., Ackers G. K. Molecular sieve studies of interacting protein systems. IX. Reaction boundary profiles for monomer-n-mer systems: comparison with sedimentation. J Biol Chem. 1971 Jul 10;246(13):4242–4250. [PubMed] [Google Scholar]
- Zimmerman J. K. Kinetically controlled association--dissociation reactions on gel chromatography. Biochemistry. 1974 Jan 15;13(2):384–389. doi: 10.1021/bi00699a025. [DOI] [PubMed] [Google Scholar]
