Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jun;55(6):1169–1182. doi: 10.1016/S0006-3495(89)82913-3

A system model for investigating passive electrical properties of neurons.

A D'Aguanno 1, B L Bardakjian 1, P L Carlen 1
PMCID: PMC1330582  PMID: 2765654

Abstract

Passive membrane properties of neurons, characterized by a linear voltage response to constant current stimulation, were investigated by busing a system model approach. This approach utilizes the derived expression for the input impedance of a network, which simulates the passive properties of neurons, to correlate measured intracellular recordings with the response of network models. In this study, the input impedances of different network configurations and of dentate granule neurons, were derived as a function of the network elements and were validated with computer simulations. The parameters of the system model, which are the values of the network elements, were estimated using an optimization strategy. The system model provides for better estimation of the network elements than the previously described signal model, due to its explicit nature. In contrast, the signal model is an implicit function of the network elements which requires intermediate steps to estimate some of the passive properties.

Full text

PDF
1169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown T. H., Fricke R. A., Perkel D. H. Passive electrical constants in three classes of hippocampal neurons. J Neurophysiol. 1981 Oct;46(4):812–827. doi: 10.1152/jn.1981.46.4.812. [DOI] [PubMed] [Google Scholar]
  2. Brown T. H., Perkel D. H., Norris J. C., Peacock J. H. Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons. J Neurophysiol. 1981 Jan;45(1):1–15. doi: 10.1152/jn.1981.45.1.1. [DOI] [PubMed] [Google Scholar]
  3. Carlen P. L., Durand D. Modelling the postsynaptic location and magnitude of tonic conductance changes resulting from neurotransmitters or drugs. Neuroscience. 1981;6(5):839–846. doi: 10.1016/0306-4522(81)90166-4. [DOI] [PubMed] [Google Scholar]
  4. Carlen P. L., Werman R., Yaari Y. Post-synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones. J Physiol. 1980 Jan;298:539–556. doi: 10.1113/jphysiol.1980.sp013100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Aguanno A., Bardakjian B. L., Carlen P. L. Passive neuronal membrane parameters: comparison of optimization and peeling methods. IEEE Trans Biomed Eng. 1986 Dec;33(12):1188–1196. doi: 10.1109/TBME.1986.325699. [DOI] [PubMed] [Google Scholar]
  6. Durand D., Carlen P. L., Gurevich N., Ho A., Kunov H. Electrotonic parameters of rat dentate granule cells measured using short current pulses and HRP staining. J Neurophysiol. 1983 Nov;50(5):1080–1097. doi: 10.1152/jn.1983.50.5.1080. [DOI] [PubMed] [Google Scholar]
  7. Durand D., Carlen P. Electrotonic parameters of neurons following chronic ethanol consumption. J Neurophysiol. 1985 Oct;54(4):807–817. doi: 10.1152/jn.1985.54.4.807. [DOI] [PubMed] [Google Scholar]
  8. Durand D. The somatic shunt cable model for neurons. Biophys J. 1984 Nov;46(5):645–653. doi: 10.1016/S0006-3495(84)84063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwards D. H., Jr, Mulloney B. Compartmental models of electrotonic structure and synaptic integration in an identified neurone. J Physiol. 1984 Mar;348:89–113. doi: 10.1113/jphysiol.1984.sp015101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iansek R., Redman S. J. An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. J Physiol. 1973 Nov;234(3):613–636. doi: 10.1113/jphysiol.1973.sp010364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jack J. J., Redman S. J. An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J Physiol. 1971 Jun;215(2):321–352. doi: 10.1113/jphysiol.1971.sp009473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lux H. D., Pollen D. A. Electrical constants of neurons in the motor cortex of the cat. J Neurophysiol. 1966 Mar;29(2):207–220. doi: 10.1152/jn.1966.29.2.207. [DOI] [PubMed] [Google Scholar]
  13. Merickel M. B., Eyman E. D., Kater S. B. Analysis of a network of electrically coupled neurons producing rhythmic activity in the snail Helisoma trivolvis. IEEE Trans Biomed Eng. 1977 May;24(3):277–287. doi: 10.1109/TBME.1977.326213. [DOI] [PubMed] [Google Scholar]
  14. Perkel D. H., Mulloney B., Budelli R. W. Quantitative methods for predicting neuronal behavior. Neuroscience. 1981;6(5):823–837. doi: 10.1016/0306-4522(81)90165-2. [DOI] [PubMed] [Google Scholar]
  15. Perkel D. H., Mulloney B. Calibrating compartmental models of neurons. Am J Physiol. 1978 Jul;235(1):R93–R98. doi: 10.1152/ajpregu.1978.235.1.R93. [DOI] [PubMed] [Google Scholar]
  16. Pottala E. W., Colburn T. R., Humphrey D. R. A dendritic compartment model neuron. IEEE Trans Biomed Eng. 1973 Mar;20(2):132–139. doi: 10.1109/TBME.1973.324175. [DOI] [PubMed] [Google Scholar]
  17. Puil E., Gimbarzevsky B., Miura R. M. Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol. 1986 May;55(5):995–1016. doi: 10.1152/jn.1986.55.5.995. [DOI] [PubMed] [Google Scholar]
  18. RALL W. Membrane potential transients and membrane time constant of motoneurons. Exp Neurol. 1960 Oct;2:503–532. doi: 10.1016/0014-4886(60)90029-7. [DOI] [PubMed] [Google Scholar]
  19. Rall W., Rinzel J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J. 1973 Jul;13(7):648–687. doi: 10.1016/S0006-3495(73)86014-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969 Dec;9(12):1483–1508. doi: 10.1016/S0006-3495(69)86467-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Segev I., Fleshman J. W., Miller J. P., Bunow B. Modeling the electrical behavior of anatomically complex neurons using a network analysis program: passive membrane. Biol Cybern. 1985;53(1):27–40. doi: 10.1007/BF00355688. [DOI] [PubMed] [Google Scholar]
  22. Turner D. A., Schwartzkroin P. A. Steady-state electrotonic analysis of intracellularly stained hippocampal neurons. J Neurophysiol. 1980 Jul;44(1):184–199. doi: 10.1152/jn.1980.44.1.184. [DOI] [PubMed] [Google Scholar]
  23. Turner D. A. Segmental cable evaluation of somatic transients in hippocampal neurons (CA1, CA3, and dentate). Biophys J. 1984 Jul;46(1):73–84. doi: 10.1016/S0006-3495(84)84000-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilson G. B., Vertatschitsch E. J., Sarna S. K., Sims S. M. Analysis of smooth muscle constants by pole-zero method. IEEE Trans Biomed Eng. 1984 Mar;31(3):310–316. doi: 10.1109/TBME.1984.325270. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES