Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1989 Jun;55(6):1215–1223. doi: 10.1016/S0006-3495(89)82917-0

Evaluation of the thermal coefficient of the resistance to fluorophore rotation in model membranes.

S F Scarlata 1
PMCID: PMC1330586  PMID: 2765657

Abstract

The thermal coefficient of the frictional resistance to fluorophore rotation (b), a parameter related to the change in the local viscosity with temperature, was determined for anthroyloxy-fatty acid probes in micelles and dimyristoyl lecithin (DMPC) and dioleoyl lecithin (DOPC) unilamellar and multilamellar vesicles. The value of b and the percent change in anisotropy with temperature (%dA/dT) remained constant with membrane depth and only depended on composition. These parameters were also the same when either in-plane, or in-plane and out-of-plane fluorophore motions were observed. This result indicates that the membranes expand isotropically. The magnitude of b was found to be primarily dependent on the packing of the hydrocarbon chains with higher b values relating to more closely-packed chains. b was responsive to the gel to liquid crystal phase transition of DMPC and the bilayer to hexagonal phase transition of egg-phosphatidylethanolamine. When the enthalpy values for the fluorophore transfer from one phase to another are calculated, the values are larger than those measured by calorimetry and reflect a discrepancy between the microscopic enthalpy experienced by the fluorophore due to a change in environment versus the macroscopic enthalpy of the system as a whole.

Full text

PDF
1215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chong P. L., Thompson T. E. Depolarization of dehydroergosterol in phospholipid bilayers. Biochim Biophys Acta. 1986 Dec 1;863(1):53–62. doi: 10.1016/0005-2736(86)90386-x. [DOI] [PubMed] [Google Scholar]
  2. Cullis P. R., de Kruijff B. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophys Acta. 1978 Oct 19;513(1):31–42. doi: 10.1016/0005-2736(78)90109-8. [DOI] [PubMed] [Google Scholar]
  3. Gruner S. M., Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  4. Kawato S., Kinosita K., Jr, Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977 May 31;16(11):2319–2324. doi: 10.1021/bi00630a002. [DOI] [PubMed] [Google Scholar]
  5. Kutchai H., Chandler L. H., Zavoico G. B. Effects of cholesterol on acyl chain dynamics in multilamellar vesicles of various phosphatidylcholines. Biochim Biophys Acta. 1983 Dec 21;736(2):137–149. doi: 10.1016/0005-2736(83)90277-8. [DOI] [PubMed] [Google Scholar]
  6. Lentz B. R., Barenholz Y., Thompson T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry. 1976 Oct 5;15(20):4521–4528. doi: 10.1021/bi00665a029. [DOI] [PubMed] [Google Scholar]
  7. Massey V., Curti B., Ganther H. A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J Biol Chem. 1966 May 25;241(10):2347–2357. [PubMed] [Google Scholar]
  8. Scarlata S. F. The effects of viscosity on gramicidin tryptophan rotational motion. Biophys J. 1988 Dec;54(6):1149–1157. doi: 10.1016/S0006-3495(88)83049-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978 Dec 15;515(4):367–394. doi: 10.1016/0304-4157(78)90010-2. [DOI] [PubMed] [Google Scholar]
  10. Straume M., Litman B. J. Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]- 6-phenyl-1,3,5-hexatriene anisotropy decay. Biochemistry. 1987 Aug 11;26(16):5113–5120. doi: 10.1021/bi00390a033. [DOI] [PubMed] [Google Scholar]
  11. Sturtevant J. M., Mateo P. L. Proposed temperature-dependent conformational transition in D-amino acid oxidase: a differential scanning microcalorimetric study. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2584–2587. doi: 10.1073/pnas.75.6.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thulborn K. R., Sawyer W. H. Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim Biophys Acta. 1978 Aug 4;511(2):125–140. doi: 10.1016/0005-2736(78)90308-5. [DOI] [PubMed] [Google Scholar]
  13. Tilley L., Thulborn K. R., Sawyer W. H. An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12, 16). J Biol Chem. 1979 Apr 25;254(8):2592–2594. [PubMed] [Google Scholar]
  14. Van Dijck P. W., De Kruijff B., Van Deenen L. L., De Gier J., Demel R. A. The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1976 Dec 2;455(2):576–587. doi: 10.1016/0005-2736(76)90326-6. [DOI] [PubMed] [Google Scholar]
  15. Vincent M., de Foresta B., Gallay J., Alfsen A. Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry. 1982 Feb 16;21(4):708–716. doi: 10.1021/bi00533a019. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES