Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Oct;242(2):405–414. doi: 10.1113/jphysiol.1974.sp010714

Cardiac responses to snout immersion in trained dogs

B A Gooden, H L Stone, S Young
PMCID: PMC1330674  PMID: 4455822

Abstract

1. Four dogs were trained to immerse their snout voluntarily for durations up to 30 sec. Indwelling instrumentation was implanted to measure blood flow velocity in the circumflex branch of the left coronary artery, to sample blood from the left atrium and coronary sinus for the determination of PO2, PCO2, pH, oxygen saturation and haemoglobin concentration, and to pace the heart. An index of myocardial oxygen consumption was calculated by multiplying the mean flow velocity by the arteriovenous difference in oxygen content.

2. Mean coronary flow velocity decreased significantly during simulated diving by 26 ± 27% (± S.D.). The range of decrease in seventeen out of twenty experiments was from -5 to -81%. Heart rate decreased by 48 ± 7% and this bradycardia was abolished by I.V. atropine.

3. Coronary sinus oxygen saturation increased significantly with snout immersion (three dogs) and arteriovenous difference decreased from 67 ± 10 to 47 ± 5%. The index of myocardial oxygen consumption decreased by 42 ± 19%. This decrease was attenuated slightly by β-blockade but was abolished by cardiac pacing in three out of four experiments.

4. The present study indicates that the heart consumes oxygen at a considerably reduced rate during simulated diving and therefore plays a direct role in the overall conservation of oxygen. This response appears to result primarily from a negative chronotropic effect induced by increased vagal tone.

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. D., Erickson H. H., Stone H. L. Myocardial metabolism during exposure to carbon monoxide in the conscious dog. J Appl Physiol. 1973 Feb;34(2):238–242. doi: 10.1152/jappl.1973.34.2.238. [DOI] [PubMed] [Google Scholar]
  2. BERNE R. M. REGULATION OF CORONARY BLOOD FLOW. Physiol Rev. 1964 Jan;44:1–29. doi: 10.1152/physrev.1964.44.1.1. [DOI] [PubMed] [Google Scholar]
  3. Barnes G. E., Bishop V. S., Horwitz L. D., Kaspar R. L. The maximum derivatives of left ventricular pressure and transverse internal diameter as indices of the inotropic state of the left ventricle in conscious dogs. J Physiol. 1973 Dec;235(3):571–590. doi: 10.1113/jphysiol.1973.sp010405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elsner R., Franklin D. L., Van Citters R. L., Kenney D. W. Cardiovascular defense against asphyxia. Science. 1966 Aug 26;153(3739):941–949. doi: 10.1126/science.153.3739.941. [DOI] [PubMed] [Google Scholar]
  5. FRANKLIN D. L., SCHLEGEL W., RUSHMER R. F. Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science. 1961 Aug 25;134(3478):564–565. doi: 10.1126/science.134.3478.564. [DOI] [PubMed] [Google Scholar]
  6. Ferrante F. L., Opdyke D. F. Mammalian ventricular function during submersion asphyxia. J Appl Physiol. 1969 May;26(5):561–570. doi: 10.1152/jappl.1969.26.5.561. [DOI] [PubMed] [Google Scholar]
  7. Folkow B., Nilsson N. J., Yonce L. R. Effects of "diving" on cardiac output in ducks. Acta Physiol Scand. 1967 Jul-Aug;70(3):347–361. doi: 10.1111/j.1748-1716.1967.tb03634.x. [DOI] [PubMed] [Google Scholar]
  8. Fortuin N. J., Kaihara S., Becker L. C., Pitt B. Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardiovasc Res. 1971 Jul;5(3):331–336. doi: 10.1093/cvr/5.3.331. [DOI] [PubMed] [Google Scholar]
  9. GREGG D. E., KHOURI E. M., RAYFORD C. R. SYSTEMIC AND CORONARY ENERGETICS IN THE RESTING UNANESTHETIZED DOG. Circ Res. 1965 Feb;16:102–113. doi: 10.1161/01.res.16.2.102. [DOI] [PubMed] [Google Scholar]
  10. Gooden B. A., Jones C. L., Stone H. L., Young S. Proceedings: Cardiac responses to diving in trained dogs. J Physiol. 1974 May;239(1):17P–19P. [PubMed] [Google Scholar]
  11. Graham T. P., Jr, Ross J., Jr, Covell J. W., Sonnenblick E. H., Clancy R. L. Myocardial oxygen consumption in acute experimental cardiac depression. Circ Res. 1967 Aug;21(2):123–138. doi: 10.1161/01.res.21.2.123. [DOI] [PubMed] [Google Scholar]
  12. Higgins C. B., Vatner S. F., Braunwald E. Parasympathetic control of the heart. Pharmacol Rev. 1973 Mar;25(1):119–155. [PubMed] [Google Scholar]
  13. James J. E., De Burgh Daly M. Reflex respiratory and cardiovascular effects of stimulation of receptors in the nose of the dog. J Physiol. 1972 Feb;220(3):673–696. doi: 10.1113/jphysiol.1972.sp009729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neill W. A., Phelps N. C., Oxendine J. M., Mahler D. J., Sim D. N. Effect of heart rate on coronary blood flow distribution in dogs. Am J Cardiol. 1973 Sep 7;32(3):306–312. doi: 10.1016/s0002-9149(73)80138-9. [DOI] [PubMed] [Google Scholar]
  15. Noble M. I., Milne E. N., Goerke R. J., Carlsson E., Domenech R. J., Saunders K. B., Hoffman J. I. Left ventricular filling and diastolic pressure-volume relations in the conscious dog. Circ Res. 1969 Feb;24(2):269–283. doi: 10.1161/01.res.24.2.269. [DOI] [PubMed] [Google Scholar]
  16. REEVES T. J., HEFNER L. L., JONES W. B., COGHLAN C., PRIETO G., CARROLL J. The hemodynamic determinants of the rate of change in pressure in the left ventricle during isometric contraction. Am Heart J. 1960 Nov;60:745–761. doi: 10.1016/0002-8703(60)90358-6. [DOI] [PubMed] [Google Scholar]
  17. SARNOFF S. J., BRAUNWALD E., WELCH G. H., Jr, CASE R. B., STAINSBY W. N., MACRUZ R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958 Jan;192(1):148–156. doi: 10.1152/ajplegacy.1957.192.1.148. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES