Abstract
1. The secretion of sodium, potassium and lithium has been studied in the isolated cat pancreas, perfused with bicarbonate buffered saline solutions of varying composition and osmolality, and stimulated maximally with secretin.
2. Under isosmolal conditions, when perfusate sodium chloride was replaced by sucrose, sodium secretion and potassium secretion were directly related to perfusate sodium concentration, [Na]p.
3. When osmolality was varied by increasing or decreasing perfusate sodium chloride concentration, the secretion of sodium and of potassium were maximal at [Na]p of about 120 and 80 mM respectively.
4. At a given [Na]p, sodium secretion was greater under hypo-osmolal conditions than under isosmolal conditions.
5. When potassium concentration was varied over the range 0-130 mM under isosmolal conditions, by adjusting perfusate NaCl concentration, the secretion of potassium and of sodium were maximal at [K]p of about 50 and 10 mM respectively. Water flux was maximal at a [K]p of 10-15 mM. The concentration of potassium in the secretion was almost identical with that in the perfusate over the whole concentration range.
6. Replacement of perfusate sodium by lithium reduced the volume of secretion, though a small secretion was maintained even in the complete absence of sodium. The concentration of lithium in the secretion was generally slightly greater than that in the perfusate.
7. Omission of potassium from the perfusate reduced secretion by about 65%. Rubidium was a complete substitute for potassium; caesium was not.
8. Energy for secretion is derived largely from oxidative phosphorylation. Secretion was reduced by more than 90% under anaerobic conditions and in the presence of dinitrophenol or cyanide. Removal of glucose from the perfusate reduced secretion by more than 50% within 30 min; lactate was a complete substitute for glucose.
9. Ouabain, ethacrinic acid and frusimide, known inhibitors of Na+, K+-ATPase activity, all inhibited pancreatic electrolyte secretion.
10. The observations are interpreted with reference to the nature of active transport processes involved in pancreatic electrolyte secretion.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argent B. E., Case R. M., Scratcherd T. Stimulation of amylase secretion from the perfused cat pancreas by potassium and other alkali metal ions. J Physiol. 1971 Aug;216(3):611–624. doi: 10.1113/jphysiol.1971.sp009543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaugé L. A., Sjodin R. A. Transport of caesium in frog muscle. J Physiol. 1968 Jan;194(1):105–123. doi: 10.1113/jphysiol.1968.sp008397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRICK J., HARPER A. A., RAPER H. S. On the preparation of secretin and pancreozymin. J Physiol. 1949 Dec;110(3-4):367–376. doi: 10.1113/jphysiol.1949.sp004445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Case R. M., Harper A. A., Scratcherd T. Water and electrolyte secretion by the perfused pancreas of the cat. J Physiol. 1968 May;196(1):133–149. doi: 10.1113/jphysiol.1968.sp008499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. THE MECHANISM OF ISOTONIC WATER TRANSPORT. J Gen Physiol. 1964 Sep;48:15–42. doi: 10.1085/jgp.48.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. TRANSPORT OF SALT AND WATER IN RABBIT AND GUINEA PIG GALL BLADDER. J Gen Physiol. 1964 Sep;48:1–14. doi: 10.1085/jgp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J. M. Non-linear osmosis. J Physiol. 1966 Mar;183(1):58–82. doi: 10.1113/jphysiol.1966.sp007851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- GIEBISCH G., KLOSE R. M., MALNIC G., SULLIVAN W. J., WINDHAGER E. E. SODIUM MOVEMENT ACROSS SINGLE PERFUSED PROXIMAL TUBULES OF RAT KIDNEYS. J Gen Physiol. 1964 Jul;47:1175–1194. doi: 10.1085/jgp.47.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guelrud M., Rudick J., Janowitz H. D. Effects of some inhibitors of sodium transport (adenosine triphosphatase inhibitors) on pancreatic secretion. Gastroenterology. 1972 Apr;62(4):540–546. [PubMed] [Google Scholar]
- Herrera F. C., Egea R., Herrera A. M. Movement of lithium across toad urinary bladder. Am J Physiol. 1971 May;220(5):1501–1508. doi: 10.1152/ajplegacy.1971.220.5.1501. [DOI] [PubMed] [Google Scholar]
- Hook J. B., Williamson H. E. Lack of correlation between natriuretic activity and inhibition of renal Nak-activated ATPase. Proc Soc Exp Biol Med. 1965 Nov;120(2):358–360. doi: 10.3181/00379727-120-30536. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keynes R. D. From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys. 1969 Aug;2(3):177–281. doi: 10.1017/s0033583500001086. [DOI] [PubMed] [Google Scholar]
- ROTHMAN S. S., BROOKS F. P. ELECTROLYTE SECRETION FROM RABBIT PANCREAS IN VITRO. Am J Physiol. 1965 Jun;208:1171–1176. doi: 10.1152/ajplegacy.1965.208.6.1171. [DOI] [PubMed] [Google Scholar]
- Ridderstap A. S., Bonting S. L. Na+- K+-activated ATPase anc exocrine pancreatic secretion in vitro. Am J Physiol. 1969 Dec;217(6):1721–1727. doi: 10.1152/ajplegacy.1969.217.6.1721. [DOI] [PubMed] [Google Scholar]
- Ridderstap A. S., Bonting S. L. Na-K-activated adenosine triphosphatase and pancreatic secretion in the dog. Am J Physiol. 1969 Mar;216(3):547–553. doi: 10.1152/ajplegacy.1969.216.3.547. [DOI] [PubMed] [Google Scholar]
- Rothman S. S., Brooks F. P. Pancreatic secretion in vitro in "Cl-free," "Co-2-free," and low-Na+environment. Am J Physiol. 1965 Oct;209(4):790–796. doi: 10.1152/ajplegacy.1965.209.4.790. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Simon B., Kinne R., Sachs G. The presence of a HCO 3 - -ATPase in pancreatic tissue. Biochim Biophys Acta. 1972 Sep 1;282(1):293–300. doi: 10.1016/0005-2736(72)90335-5. [DOI] [PubMed] [Google Scholar]
- Simon B., Thomas L. HCO 3 -stimulated ATPase from mammalian pancreas. Properties and its arrangement with other enzyme activities. Biochim Biophys Acta. 1972 Nov 2;288(2):434–442. doi: 10.1016/0005-2736(72)90264-7. [DOI] [PubMed] [Google Scholar]
- Whittembury G., Fishman J. Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: the effect of K, ouabain and ethacrynic acid. Pflugers Arch. 1969;307(3):138–153. doi: 10.1007/BF00592080. [DOI] [PubMed] [Google Scholar]
- Wizemann V., Christian A. L., Wiechmann J., Schulz I. The distribution of membrane bound enzymes in the acini and ducts of the cat pancreas. Pflugers Arch. 1974 Feb 18;347(1):39–47. doi: 10.1007/BF00587053. [DOI] [PubMed] [Google Scholar]
- Wizemann V., Schulz I. Influence of amphotericin, amiloride, ionophores, and 2,4-dinitrophenol on the secretion of the isolated cat's pancreas. Pflugers Arch. 1973;339(4):317–338. doi: 10.1007/BF00594167. [DOI] [PubMed] [Google Scholar]
- Wizemann V., Schulz I., Simon B. SH-groups on the surface of pancreas cells involved in secretin stimulation and glucose-mediated secretion. Biochim Biophys Acta. 1973 May 11;307(2):366–371. doi: 10.1016/0005-2736(73)90102-8. [DOI] [PubMed] [Google Scholar]
- Yoshimura H., Imai Y. Studies on the secretory potential of acinal cells of the dog submaxillary gland and its ionic dependency. Jpn J Physiol. 1967 Jun;17(3):280–293. doi: 10.2170/jjphysiol.17.280. [DOI] [PubMed] [Google Scholar]
