Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Oct;242(2):429–451. doi: 10.1113/jphysiol.1974.sp010716

Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle

H Reuter
PMCID: PMC1330676  PMID: 4376168

Abstract

1. Isoprenaline and noradrenaline were applied iontophoretically to cardiac Purkinje fibres. Intracellular application of the drugs had no effect, while extracellular application of the same amounts of charge caused acceleration of pace-maker activity and a shift of the plateau level of the action potential. These results indicate that β-adrenergic receptors are located at the outside of the cardiac cell membrane.

2. A systematic comparison of the effects of cyclic AMP derivatives and noradrenaline on action potentials and isometric tension of ventricular myocardial preparations showed that the nucleotides and the catecholamine increase the plateau height and the duration of the action potential and also increase tension. However, there are quantitative differences in the action of these drugs.

3. Cyclic AMP derivatives and noradrenaline increase the slow inward current, ICa, in ventricular myocardial preparations. Voltage clamp analysis of ICa showed that the kinetic parameters of this membrane current are not affected by these drugs. However, the membrane conductance to Ca ions is greatly increased by noradrenaline and to a smaller extent by dibutyryl cyclic AMP.

4. Concentration—response relations of the membrane effects of noradrenaline on plateau height of the action potential and on ICa could be fitted by the same theoretical log concentration—response curve. The Hill plot of this concentration—response curve had a slope of 2. The half maximal response occurred at 5 × 10-7 M.

5. The results are compared with other membrane effects of catecholamines and cyclic nucleotides in cardiac muscle. The effects on ICa are related to the positive inotropic effect of the drugs.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J., Erlij D. Effects of norepinephrine on tissues of the frog heart atrium poisoned by tetrodotoxin. Nature. 1967 Sep 9;215(5106):1178–1179. doi: 10.1038/2151178b0. [DOI] [PubMed] [Google Scholar]
  2. Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertelli A., Bianchi C., Beani L. Effects of AMP and cyclic AMP on the mechanical and electrical activity of isolated mammalian atria. Eur J Pharmacol. 1972 Jul;19(1):130–133. doi: 10.1016/0014-2999(72)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Blinks J. R. Evaluation of the cardiac effects of several beta adrenergic blocking agents. Ann N Y Acad Sci. 1967 Feb 10;139(3):673–685. doi: 10.1111/j.1749-6632.1967.tb41237.x. [DOI] [PubMed] [Google Scholar]
  6. Brady A. J. Physiological appraisial of the actions of catecholamines on myocardial contractions. Ann N Y Acad Sci. 1967 Feb 10;139(3):661–672. doi: 10.1111/j.1749-6632.1967.tb41236.x. [DOI] [PubMed] [Google Scholar]
  7. Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 1969;313(4):300–315. doi: 10.1007/BF00593955. [DOI] [PubMed] [Google Scholar]
  8. DEL CASTILLO J., KATZ B. On the localization of acetylcholine receptors. J Physiol. 1955 Apr 28;128(1):157–181. doi: 10.1113/jphysiol.1955.sp005297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delahayes J. F. Electrical responses of cardiac muscle in a Na-free high-Ca solution. Experientia. 1972 Sep 15;28(9):1054–1055. doi: 10.1007/BF01918668. [DOI] [PubMed] [Google Scholar]
  10. ENGSTFELD G., ANTONI H., FLECKENSTEIN A. [The restoration of stimulus transmission and contraction power of K ion paralysed frog and mammalian myocardium by adrenaline. Analysis of an effect of adrenaline not observed until now]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;273:145–163. [PubMed] [Google Scholar]
  11. Ehara T. Rectifier properties of canine papillary muscle. Jpn J Physiol. 1971 Feb;21(1):49–69. doi: 10.2170/jjphysiol.21.49. [DOI] [PubMed] [Google Scholar]
  12. Entman M. L., Levey G. S., Epstein S. E. Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3',5'-AMP. Circ Res. 1969 Oct;25(4):429–438. doi: 10.1161/01.res.25.4.429. [DOI] [PubMed] [Google Scholar]
  13. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GROSSMAN A., FURCHGOTT R. F. THE EFFECTS OF VARIOUS DRUGS ON CALCIUM EXCHANGE IN THE ISOLATED GUINEA-PIG LEFT AURICLE. J Pharmacol Exp Ther. 1964 Aug;145:162–172. [PubMed] [Google Scholar]
  15. Giotti A., Ledda F., Mannaioni P. F. Effects of noradrenaline and isoprenaline, in combination with - and -receptor blocking substances, on the action potential of cardiac Purkinje fibres. J Physiol. 1973 Feb;229(1):99–113. doi: 10.1113/jphysiol.1973.sp010129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hauswirth O., Noble D., Tsien R. W. Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers. Science. 1968 Nov 22;162(3856):916–917. doi: 10.1126/science.162.3856.916. [DOI] [PubMed] [Google Scholar]
  18. Hoffman B. F., Singer D. H. Appraisal of the effects of catecholamines on cardiac electrical activity. Ann N Y Acad Sci. 1967 Feb 10;139(3):914–939. doi: 10.1111/j.1749-6632.1967.tb41261.x. [DOI] [PubMed] [Google Scholar]
  19. KAVALER F. Membrane depolarization as a cause of tension development in mammalian ventricular muscle. Am J Physiol. 1959 Nov;197:968–970. doi: 10.1152/ajplegacy.1959.197.5.968. [DOI] [PubMed] [Google Scholar]
  20. KRNJEVIC K., LAVERTY R., SHARMAN D. F. Iontophoretic release of adrenaline, noradrenaline and 5-hydroxytryptamine from micropipettes. Br J Pharmacol Chemother. 1963 Jun;20:491–496. doi: 10.1111/j.1476-5381.1963.tb01485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaumann A. J. Adrenergic receptors in heart muscle: relations among factors influencing the sensitivity of the cat papillary muscle to catecholamines. J Pharmacol Exp Ther. 1970 Jun;173(2):383–398. [PubMed] [Google Scholar]
  22. Kirchberger M. A., Tada M., Repke D. I., Katz A. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol. 1972 Dec;4(6):673–680. doi: 10.1016/0022-2828(72)90120-4. [DOI] [PubMed] [Google Scholar]
  23. MUSCHOLL E. Effect of cocaine and related drugs on the uptake of noradrenaline by heart and spleen. Br J Pharmacol Chemother. 1961 Jun;16:352–359. doi: 10.1111/j.1476-5381.1961.tb01095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meinertz T., Nawrath H., Scholz H. Influence of cyclization and acyl substitution on the inotropic effects of adenine nucleotides. Naunyn Schmiedebergs Arch Pharmacol. 1973;278(2):165–178. doi: 10.1007/BF00500648. [DOI] [PubMed] [Google Scholar]
  25. Meinertz T., Nawrath H., Scholz H. Stimulatory effects of DB-c-AMP and adrenaline on myocardial contraction and 45Ca exchange. Experiments at reduced calcium concentration and low frequencies of stimulation. Naunyn Schmiedebergs Arch Pharmacol. 1973;279(4):327–338. doi: 10.1007/BF00500798. [DOI] [PubMed] [Google Scholar]
  26. Mobley B. A., Page E. The surface area of sheep cardiac Purkinje fibres. J Physiol. 1972 Feb;220(3):547–563. doi: 10.1113/jphysiol.1972.sp009722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morad M., Rolett E. L. Relaxing effects of catecholamines on mammalian heart. J Physiol. 1972 Aug;224(3):537–558. doi: 10.1113/jphysiol.1972.sp009912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morgenstern M., Nodack E., Köhler E. The effects of isoprenaline and tyramine on the 45 calcium uptake, the total calcium content and the contraction force of isolated guinea-pig atria in dependence on different extracellular hydrogen ion concentrations. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(2):125–137. doi: 10.1007/BF00501847. [DOI] [PubMed] [Google Scholar]
  29. New W., Trautwein W. Inward membrane currents in mammalian myocardium. Pflugers Arch. 1972;334(1):1–23. doi: 10.1007/BF00585997. [DOI] [PubMed] [Google Scholar]
  30. OTSUKA M. Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetierherzen. Pflugers Arch. 1958;266(5):512–517. doi: 10.1007/BF00362255. [DOI] [PubMed] [Google Scholar]
  31. Pappano A. J. Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res. 1970 Sep;27(3):379–390. doi: 10.1161/01.res.27.3.379. [DOI] [PubMed] [Google Scholar]
  32. Paton W. D. Adrenergic receptors viewed in light of general receptor theories. Ann N Y Acad Sci. 1967 Feb 10;139(3):632–644. doi: 10.1111/j.1749-6632.1967.tb41233.x. [DOI] [PubMed] [Google Scholar]
  33. Rahn K. H., Reuter H. Uber den Zusammenhang der Wirkungen von Adrenalin, einem beta-Adrenolyticum und Chinidin auf Kontraktionskraft und Calcium-Umsatz des Meerschweinchenvorhofs. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1966;252(5):444–451. [PubMed] [Google Scholar]
  34. Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
  35. Reuter H., Scholz H. Uber den Einfluss der extracellulären Ca-Konzentration auf Membranpotential und Kontraktion isolierter Herzpräparate bei graduierter Depolarisation. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;300(2):87–107. [PubMed] [Google Scholar]
  36. Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol. 1967 Sep;192(2):479–492. doi: 10.1113/jphysiol.1967.sp008310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Reuter H. Uber die Wirkung von Adrenalin auf den cellulären Ca-Umsatz des Meerschweinchenvorhofs. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Aug 20;251(4):401–412. [PubMed] [Google Scholar]
  38. Reuter H., Wollert U. Uber die Wirkung verschiedener sympathomimetischer Amine auf Kontraktionskraft und 45Ca-Aufnahme isolierter Meerschweinchenvorhöfe. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967 Sep 15;258(3):288–296. [PubMed] [Google Scholar]
  39. Scholz H., Reuter H. Uber die Beziehung zwischen Membranpotential und Kontraktion am Herzen unter dem Einfluss von Adrenalin. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;260(2):196–197. [PubMed] [Google Scholar]
  40. Skelton C. L., Levey G. S., Epstein S. E. Positive inotropic effects of dibutyryl cyclic adenosine 3',5'-monophosphate. Circ Res. 1970 Jan;26(1):35–43. doi: 10.1161/01.res.26.1.35. [DOI] [PubMed] [Google Scholar]
  41. Sobel B. E., Mayer S. E. Cyclic adenosine monophosphate and cardiac contractility. Circ Res. 1973 Apr;32(4):407–414. doi: 10.1161/01.res.32.4.407. [DOI] [PubMed] [Google Scholar]
  42. TRAUTWEIN W., SCHMIDT R. F. [On the membrane effect of adrenalin on the myocardial fiber]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;271:715–726. [PubMed] [Google Scholar]
  43. Tsien R. W. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nat New Biol. 1973 Sep 26;245(143):120–122. doi: 10.1038/newbio245120a0. [DOI] [PubMed] [Google Scholar]
  44. Tsien R. W., Giles W., Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol. 1972 Dec 6;240(101):181–183. doi: 10.1038/newbio240181a0. [DOI] [PubMed] [Google Scholar]
  45. Vassort G., Rougier O., Garnier D., Sauviat M. P., Coraboeuf E., Gargouïl Y. M. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflugers Arch. 1969;309(1):70–81. doi: 10.1007/BF00592283. [DOI] [PubMed] [Google Scholar]
  46. Venter J. C., Dixon J. E., Maroko P. R., Kaplan N. O. Biologically active catecholamines covalentyly bound to glass beads. Proc Natl Acad Sci U S A. 1972 May;69(5):1141–1145. doi: 10.1073/pnas.69.5.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Venter J. C., Ross J., Jr, Dixon J. E., Mayer S. E., Kaplan N. O. Immobilized catecholamine and cocaine effects on contractility of cardiac muscle. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1214–1217. doi: 10.1073/pnas.70.4.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wood E. H., Heppner R. L., Weidmann S. Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res. 1969 Mar;24(3):409–445. doi: 10.1161/01.res.24.3.409. [DOI] [PubMed] [Google Scholar]
  50. Yong M. S. Stability of catecholamines and propranolol covalently bound to sepharose and glass beads. Science. 1973 Oct 12;182(4108):157–158. doi: 10.1126/science.182.4108.157. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES