Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Dec;243(3):637–660.3. doi: 10.1113/jphysiol.1974.sp010770

A core-conductor model of the cardiac Purkinje fibre based on structural analysis

D C Hellam, J W Studt
PMCID: PMC1330728  PMID: 4449076

Abstract

1. Structural analysis of voltage clamp preparations of sheep cardiac Purkinje fibres was carried out using methods based on light and electron microscopic observations. Results demonstrate the marked structural variability in preparations that appear, outwardly, simple.

2. The length of the cell aggregate was measured in vitro, and the mean area of cross-section, by light microscopic methods in serially sampled transverse sections. The number of intercellular clefts and path lengths of cell profiles distributed at the lateral surface and along clefts were determined from photomicrographs. Accuracy of these estimates was improved by obtaining, electron microscopically, values representing the degree of membrane folding in longitudinal and transverse planes.

3. Cleft width was evaluated from electron micrographs. Measurements made on sections that there tilted through wide arcs with a goniometer indicate that cleft width is quite variable and, on average, somewhat greater than 400 Å.

4. A three-dimensional core-conductor model is presented to aid in quantitative interpretation of electrophysiological experiments. Application of the model to individual preparations requires evaluation of the length and perimeter of cross-section of cell aggregates and of the mean number, width and depth of intercellular clefts, with appropriate corrections for fine sarcolemmal folding. Methods are given for estimating these structural parameter values from measurements of external dimensions of cell aggregates.

5. The core-conductor model is applied in an accompanying analysis of the linear electrical characteristics of Purkinje membrane.

Full text

PDF
637

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bone Q., Denton E. J. The osmotic effects of electron microscope fixatives. J Cell Biol. 1971 Jun;49(3):571–581. doi: 10.1083/jcb.49.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dudel J., Peper K., Rüdel R., Trautwein W. The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):197–212. doi: 10.1007/BF01844100. [DOI] [PubMed] [Google Scholar]
  3. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fozzard H. A. Membrane capacity of the cardiac Purkinje fibre. J Physiol. 1966 Jan;182(2):255–267. doi: 10.1113/jphysiol.1966.sp007823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freygang W. H., Trautwein W. The structural implications of the linear electrical properties of cardiac Purkinje strands. J Gen Physiol. 1970 Apr;55(4):524–547. doi: 10.1085/jgp.55.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hellam D. C., Studt J. W. Linear analysis of membrane conductance and capacitance in cardiac Purkinje fibres. J Physiol. 1974 Dec;243(3):661–694. doi: 10.1113/jphysiol.1974.sp010771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MUIR A. R. Observations on the fine structure of the Purkinje fibres in the ventricles of the sheep's heart. J Anat. 1957 Apr;91(2):251–258. [PMC free article] [PubMed] [Google Scholar]
  8. McAllister R. E., Noble D. The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J Physiol. 1966 Oct;186(3):632–662. doi: 10.1113/jphysiol.1966.sp008060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mobley B. A., Page E. The surface area of sheep cardiac Purkinje fibres. J Physiol. 1972 Feb;220(3):547–563. doi: 10.1113/jphysiol.1972.sp009722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sommer J. R., Johnson E. A. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968 Mar;36(3):497–526. doi: 10.1083/jcb.36.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sommer J. R., Johnson E. A. Purkinje fibers of the heart examined with the peroxidase reaction. J Cell Biol. 1968 May;37(2):570–574. doi: 10.1083/jcb.37.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES