Abstract
1. Compensatory vertical or torsional eye movements of rabbits caused by linear accelerations along the transverse or sagittal axis were measured. Sinusoidal accelerations (parallel swing) in a frequency range of 0-068--1-22 Hz and acceleration steps (linear track) of 0-02--0-11 g were applied. 2. On the parallel swing, properties of the maculo-ocular reflexes were similar for transverse and sagittal acceleration. Gain (rotation of eye/rotation of the resultant linear vector) proved to be very low: about 0-1 for 0-3 Hz and smaller than 0-01 for frequencies above 1-0 Hz. The decrease in gain was accompanied by an increase in phase lag to about 180degrees. No non-linearity was revealed by the use of different amplitudes (10--30 cm). 3. On the linear track, eye deviation after an acceleration step took many seconds to develop fully. Gain increased with time and was about 0-65 after 5 sec. 4. The results indicate that the responses of the otoliths, as reflected in maculo-ocular reactions, are very slow. Fluctuations in the direction of gravity seem to be averaged over several seconds by the system. This may explain that erratic linear accelerations(frequency greater than 1 Hz) during locomotion or transport do not lead to eye movements or disorientation.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baarsma E., Collewijn H. Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit. J Physiol. 1974 May;238(3):603–625. doi: 10.1113/jphysiol.1974.sp010546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker R., Precht W., Berthoz A. Synaptic connections to trochlear motoneurons determined by individual vestibular nerve branch stimulation in the cat. Brain Res. 1973 Dec 21;64:402–406. doi: 10.1016/0006-8993(73)90195-9. [DOI] [PubMed] [Google Scholar]
- DE VRIES H. The mechanics of the labyrinth otoliths. Acta Otolaryngol. 1951 Jun;38(3):262–273. doi: 10.3109/00016485009118384. [DOI] [PubMed] [Google Scholar]
- Fernandez C., Goldberg J. M., Abend W. K. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972 Nov;35(6):978–987. doi: 10.1152/jn.1972.35.6.978. [DOI] [PubMed] [Google Scholar]
- Fluur E., Mellström A. The otolith organs and their influence on oculomotor movements. Exp Neurol. 1971 Jan;30(1):139–147. doi: 10.1016/0014-4886(71)90228-7. [DOI] [PubMed] [Google Scholar]
- Hughes A. Topographical relationships between the anatomy and physiology of the rabbit visual system. Doc Ophthalmol. 1971 Sep 12;30:33–159. doi: 10.1007/BF00142518. [DOI] [PubMed] [Google Scholar]
- JONGKEES L. B., PHILIPSZOON A. J. Some nystagmographical methods for the investigation of the effect of drugs upon the labyrinth. The influence of cinnarazine, hyoscine, largactil and nembutal on the vestibular system. Acta Physiol Pharmacol Neerl. 1960 Jul;9:240–275. [PubMed] [Google Scholar]
- LANSBERG M. P. Some considerations and investigations in the field of labyrinthine functioning. Aeromed Acta. 1954;3:209–267. [PubMed] [Google Scholar]
- Lindeman H. H. Studies on the morphology of the sensory regions of the vestibular apparatus with 45 figures. Ergeb Anat Entwicklungsgesch. 1969;42(1):1–113. [PubMed] [Google Scholar]
- Loe P. R., Tomko D. L., Werner G. The neural signal of angular head position in primary afferent vestibular nerve axons. J Physiol. 1973 Apr;230(1):29–50. doi: 10.1113/jphysiol.1973.sp010173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINSON D. A. A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. IEEE Trans Biomed Eng. 1963 Oct;10:137–145. doi: 10.1109/tbmel.1963.4322822. [DOI] [PubMed] [Google Scholar]
- SCHOENE H. ON THE ROLE OF GRAVITY IN HUMAN SPATIAL ORIENTATION. Aerosp Med. 1964 Aug;35:764–772. [PubMed] [Google Scholar]
- Scholtz H. J. Kompensatorische Augenbewegungen auf der parallelschwingenden Horizontalschaukel bei Gesunden und Vestibulariskranken. Z Laryngol Rhinol Otol. 1972 Jan;51(1):46–57. [PubMed] [Google Scholar]
- Schwindt P. C., Richter A., Precht W. Short latency utricular and canal input to ipsilateral abducens motoneurons. Brain Res. 1973 Sep 28;60(1):259–262. doi: 10.1016/0006-8993(73)90867-6. [DOI] [PubMed] [Google Scholar]
- Schöne H., Mortag H. G. Variation of the subjective vertical on the parallel swing at different body positions. Psychol Forsch. 1968;32(2):124–134. doi: 10.1007/BF00417361. [DOI] [PubMed] [Google Scholar]
- Suzuki J. I., Tokumasu K., Goto K. Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol. 1969 Oct;68(4):350–362. doi: 10.3109/00016486909121573. [DOI] [PubMed] [Google Scholar]
- Vidal J., Jeannerod M., Lifschitz W., Levitan H., Rosenberg J., Segundo J. P. Static and dynamic properties of gravity-sensitive receptors in the cat vestibular system. Kybernetik. 1971 Dec;9(6):205–215. doi: 10.1007/BF00289582. [DOI] [PubMed] [Google Scholar]
- WALSH E. G. The perception of rhythmically repeated linear motion in the horizontal plane. Br J Psychol. 1962 Nov;53:439–445. doi: 10.1111/j.2044-8295.1962.tb00849.x. [DOI] [PubMed] [Google Scholar]
- Walsh E. G. The use of impulsive mechanical stimuli of variable duration in the evaluation of the indication time of the otolith organs. J Laryngol Otol. 1966 Dec;80(12):1218–1223. doi: 10.1017/s0022215100066597. [DOI] [PubMed] [Google Scholar]
- Young L. R., Meiry J. L. A revised dynamic otolith model. Aerosp Med. 1968 Jun;39(6):606–608. [PubMed] [Google Scholar]
