Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 May;238(3):583–602. doi: 10.1113/jphysiol.1974.sp010545

Opponent-colour cells in different layers of foveal striate cortex

Peter Gouras
PMCID: PMC1330904  PMID: 4212213

Abstract

1. The majority of cells in layer 4B have opponent-colour properties indicating that colour opponency plays an important role in the early stages of visual processing in foveal striate cortex. In contrast to cells in the lateral geniculate nucleus many of these cells receive centre—surround antagonism from the same cone mechanism. Some cells show this spatial antagonism at threshold; others require suprathreshold stimuli for its demonstration.

2. The majority of cells in layer 4B do not show orientation or directional selectivity. The proportion of cells with orientation and directional selectivity increases and the proportion of opponent-colour cells decreases with increasing distance above and below layer 4B so that the majority of cells in the outer layers exhibit considerable spatial selectivity without apparent colour opponency. These changing proportions suggest that the latter cells may be receiving their inputs from different types of opponent-colour cells making them sensitive to different types of colour contrast but not to colour per se.

3. More opponent-colour cells receive inputs from the red- and green- sensitive cone mechanisms than from the blue-sensitive one. This difference is more marked in layer 4B than 3B suggesting that the latter cortical layer may be more involved in colour vision than the former.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINDLEY G. S. The effects on colour vision of adaptation to very bright lights. J Physiol. 1953 Nov 28;122(2):332–350. doi: 10.1113/jphysiol.1953.sp005003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop P. O., Henry G. H. Striate neurons: receptive field concepts. Invest Ophthalmol. 1972 May;11(5):346–354. [PubMed] [Google Scholar]
  3. Campbell F. W., Robson J. G. Application of Fourier analysis to the visibility of gratings. J Physiol. 1968 Aug;197(3):551–566. doi: 10.1113/jphysiol.1968.sp008574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daw N. W. Neurophysiology of color vision. Physiol Rev. 1973 Jul;53(3):571–611. doi: 10.1152/physrev.1973.53.3.571. [DOI] [PubMed] [Google Scholar]
  5. De Valois R. L. Analysis and coding of color vision in the primate visual system. Cold Spring Harb Symp Quant Biol. 1965;30:567–579. doi: 10.1101/sqb.1965.030.01.055. [DOI] [PubMed] [Google Scholar]
  6. De Valois R. L., Pease P. L. Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures. Science. 1971 Feb 19;171(3972):694–696. doi: 10.1126/science.171.3972.694. [DOI] [PubMed] [Google Scholar]
  7. Dow B. M., Gouras P. Color and spatial specificity of single units in Rhesus monkey foveal striate cortex. J Neurophysiol. 1973 Jan;36(1):79–100. doi: 10.1152/jn.1973.36.1.79. [DOI] [PubMed] [Google Scholar]
  8. Gouras P. Color opponency from fovea to striate cortex. Invest Ophthalmol. 1972 Jun;11(6):427–434. [PubMed] [Google Scholar]
  9. Gouras P., Padmos P. Identification of cone mechanisms in graded responses of foveal striate cortex. J Physiol. 1974 May;238(3):569–581. doi: 10.1113/jphysiol.1974.sp010544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gouras P. The function of the midget cell system in primate color vision. Vision Res. 1971;Suppl 3:397–410. doi: 10.1016/0042-6989(71)90053-8. [DOI] [PubMed] [Google Scholar]
  11. Gouras P. Trichromatic mechanisms in single cortical neurons. Science. 1970 Apr 24;168(3930):489–492. doi: 10.1126/science.168.3930.489. [DOI] [PubMed] [Google Scholar]
  12. HUBEL D. H., WIESEL T. N. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959 Oct;148:574–591. doi: 10.1113/jphysiol.1959.sp006308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hubel D. H., Wiesel T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972 Dec;146(4):421–450. doi: 10.1002/cne.901460402. [DOI] [PubMed] [Google Scholar]
  15. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Land E. H., McCann J. J. Lightness and retinex theory. J Opt Soc Am. 1971 Jan;61(1):1–11. doi: 10.1364/josa.61.000001. [DOI] [PubMed] [Google Scholar]
  17. Leighton S. B., Dow B. M. Servo-controlled moving stimulus generator for single unit studies in vision. Vision Res. 1973 Jun;13(6):1195–1198. doi: 10.1016/0042-6989(73)90155-7. [DOI] [PubMed] [Google Scholar]
  18. McCollough C. Color Adaptation of Edge-Detectors in the Human Visual System. Science. 1965 Sep 3;149(3688):1115–1116. doi: 10.1126/science.149.3688.1115. [DOI] [PubMed] [Google Scholar]
  19. Poggio G. F. Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. Invest Ophthalmol. 1972 May;11(5):368–377. [PubMed] [Google Scholar]
  20. Riggs L. A. Curvature as a feature of pattern vision. Science. 1973 Sep 14;181(4104):1070–1072. doi: 10.1126/science.181.4104.1070. [DOI] [PubMed] [Google Scholar]
  21. STILES W. S. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–165. doi: 10.1007/BF00162601. [DOI] [PubMed] [Google Scholar]
  22. Spinelli D. N., Pribram K. H., Bridgeman B. Visual receptive field organization of single units in the visual cortex of monkey. Int J Neurosci. 1970 Oct;1(1):67–74. doi: 10.3109/00207457009147618. [DOI] [PubMed] [Google Scholar]
  23. Stromeyer C. F., 3rd Edge-contingent color after effects: spatial frequency specificity. Vision Res. 1972 Apr;12(4):717–733. doi: 10.1016/0042-6989(72)90165-4. [DOI] [PubMed] [Google Scholar]
  24. Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES