Abstract
1. Efflux experiments and longitudinal diffusion experiments were performed to determine the permeability of the surface membrane and of the nexal membrane of sheep and calf ventricular muscle to radioactive [1-14C]tetraethylammonium cations ([14C]TEA) at 25° C.
2. Efflux curves were analysed as the sum of three exponential processes with time constants for TEA loss of 2·7, 13·3, and 832 min.
3. The first component was attributed to the exchange of extracellular free TEA, the second to extracellular, probably mucopolysaccharide bound TEA, and the third to intracellular free TEA.
4. From the decay of the first phase the tortuosity factor for extracellular radial movement of TEA ions was calculated as 1·59.
5. The permeability of the surface membrane to [14C]TEA was estimated as 6·06 × 10-8 cm/sec.
6. A tenfold change of [K]o from 5·4 to 54 mM resulted in a 2·75-fold decrease of the permeability of the surface membrane; a fifteenfold change (5·4 to 81 mM) resulted in a 4·24-fold decrease.
7. From longitudinal non-steady state diffusion experiments the permeability of the nexal membrane to [14C]TEA turned out to be 1·27 × 10-3 cm/sec.
8. The permeability of the nexal membrane to TEA is 21,000 times larger than that of the surface membrane. This finding is consistent with the concept of low resistance pathways between myocardial cells.
9. From a comparison of the dimensions of radiopotassium, [14C]TEA and Procion Yellow, and the study of their diffusional properties, the pores within the nexal membrane of the intercalated disks are deduced to have a diameter of somewhat more than 10 Å.
Full text
PDF





















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Délèze J. The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J Physiol. 1970 Jul;208(3):547–562. doi: 10.1113/jphysiol.1970.sp009136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOERKE J., PAGE E. CAT HEART MUSCLE IN VITRO. VI. POTASSIUM EXCHANGE IN PAPILLARY MUSCLES. J Gen Physiol. 1965 May;48:933–948. doi: 10.1085/jgp.48.5.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALDIMANN C. EFFET DU T'ETRA'ETHYLAMMONIUM SUR LES POTENTIELS DE REPOS ET D'ACTION DU COEUR DE MOUTON. Arch Int Pharmacodyn Ther. 1963 Nov 1;146:1–9. [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jongsma H. J., van Rijn H. E. Electronic spread of current in monolayer cultures of neonatal rat heart cells. J Membr Biol. 1972;9(4):341–360. [PubMed] [Google Scholar]
- KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
- Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
- Matter A. A morphometric study on the nexus of rat cardiac muscle. J Cell Biol. 1973 Mar;56(3):690–696. doi: 10.1083/jcb.56.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE E., BERNSTEIN R. S. CAT HEART MUSCLE IN VITRO. V. DIFFUSION THROUGH A SHEET OF RIGHT VENTRICLE. J Gen Physiol. 1964 Jul;47:1129–1140. doi: 10.1085/jgp.47.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE E. Cat heart muscle in vitro. III. The extracellular space. J Gen Physiol. 1962 Nov;46:201–213. doi: 10.1085/jgp.46.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGE E., SOLOMON A. K. Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle. J Gen Physiol. 1960 Nov;44:327–344. doi: 10.1085/jgp.44.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PERSOFF D. A. A comparison of methods for measuring efflux of labelled potassium from contracting rabbit atria. J Physiol. 1960 Jul;152:354–366. doi: 10.1113/jphysiol.1960.sp006492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page E., McCallister L. P. Studies on the intercalated disk of rat left ventricular myocardial cells. J Ultrastruct Res. 1973 Jun;43(5):388–411. doi: 10.1016/s0022-5320(73)90017-8. [DOI] [PubMed] [Google Scholar]
- SJOSTRAND F. S., ANDERSSON E. Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia. 1954 Sep 15;10(9):369–370. doi: 10.1007/BF02160542. [DOI] [PubMed] [Google Scholar]
- Spira A. W. The nexus in the intercalated disc of the canine heart: quantitative data for an estimation of its resistance. J Ultrastruct Res. 1971 Mar;34(5):409–425. doi: 10.1016/s0022-5320(71)80055-2. [DOI] [PubMed] [Google Scholar]
- Thureson-Klein A., Klein R. L. Cation distribution and cardiac jelly in early embryonic heart: a histochemical and electron microscopic study. J Mol Cell Cardiol. 1971 Mar;2(1):31–40. doi: 10.1016/0022-2828(71)90076-9. [DOI] [PubMed] [Google Scholar]
- Weidmann S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol. 1966 Nov;187(2):323–342. doi: 10.1113/jphysiol.1966.sp008092. [DOI] [PMC free article] [PubMed] [Google Scholar]
