Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Aug;241(1):235–260. doi: 10.1113/jphysiol.1974.sp010651

Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

R B Fisher, M L G Gardner
PMCID: PMC1331083  PMID: 4422318

Abstract

1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated.

2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974).

3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled.

4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion.

5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline.

6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l.

7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone.

8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration.

Full text

PDF
235

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins G. L. A versatile digital computer program for non-linear regression analysis. Biochim Biophys Acta. 1971 Dec 21;252(3):405–420. doi: 10.1016/0304-4165(71)90142-5. [DOI] [PubMed] [Google Scholar]
  2. BLEEHEN N. M., FISHER R. B. The action of insulin in the isolated rat heart. J Physiol. 1954 Feb 26;123(2):260–276. doi: 10.1113/jphysiol.1954.sp005049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry R. J., Eggenton J. Membrane potentials of epithelial cells in rat small intestine. J Physiol. 1972 Dec;227(1):201–216. doi: 10.1113/jphysiol.1972.sp010027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bywater R. J., Fisher R. B., Gardner M. L. Deuterium oxide as a water flux tracer in rat small intestine. J Physiol. 1972 Dec;227(2):55P–56P. [PubMed] [Google Scholar]
  5. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  6. Csáky T. Z., Hara Y. Inhibition of active intestinal sugar transport by digitalis. Am J Physiol. 1965 Sep;209(3):467–472. doi: 10.1152/ajplegacy.1965.209.3.467. [DOI] [PubMed] [Google Scholar]
  7. FAUST R. G. EFFECTS OF BILE SALTS, SODIUM DEOXYCHOLATE, STROPHANTHIN-G AND METABOLIC INHIBITORS ON THE ABSORPTION OF D-GLUCOSE BY THE RAT JEJUNUM, IN VITRO. J Cell Physiol. 1964 Feb;63:55–64. doi: 10.1002/jcp.1030630106. [DOI] [PubMed] [Google Scholar]
  8. FISHER R. B., PARSONS D. S. A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949 Dec 15;110(1-2):36-46, pl. doi: 10.1113/jphysiol.1949.sp004419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FISHER R. B., PARSONS D. S. Glucose absorption from surviving rat small intestine. J Physiol. 1949 Dec;110(3-4):281–293. doi: 10.1113/jphysiol.1949.sp004438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FISHER R. B. The absorption of water and of some small solute molecules from the isolated small intestine of the rat. J Physiol. 1955 Dec 29;130(3):655–664. doi: 10.1113/jphysiol.1955.sp005433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faelli A., Esposito G., Capraro V. Intracellular concentration of sodium and glucose correlated with transport phenomena. Arch Sci Biol (Bologna) 1966 Jul-Sep;50(3):234–241. [PubMed] [Google Scholar]
  12. Fisher R. B., Gardner M. L. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine. J Physiol. 1974 Aug;241(1):211–234. doi: 10.1113/jphysiol.1974.sp010650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher R. B., Gilbert J. C. Accessibility of heart water to pentoses. J Physiol. 1970 Sep;210(2):277–286. doi: 10.1113/jphysiol.1970.sp009209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilles-Baillien M., Schoffeniels E. Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim. 1965 Mar;73(2):355–357. doi: 10.3109/13813456509084257. [DOI] [PubMed] [Google Scholar]
  15. Newey H., Rampone A. J., Smyth D. H. The relation between L-methionine uptake and sodium in rat small intestine in vitro. J Physiol. 1970 Dec;211(3):539–549. doi: 10.1113/jphysiol.1970.sp009292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parsons D. S., Prichard J. S. A preparation of perfused small intestine for the study of absorption in amphibia. J Physiol. 1968 Sep;198(2):405–434. doi: 10.1113/jphysiol.1968.sp008614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robinson J. W. The loss of intestinal transport capacity following preincubation in sodium-free media in vitro. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;294(2):182–200. doi: 10.1007/BF00363605. [DOI] [PubMed] [Google Scholar]
  18. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. II. THE INTERACTION BETWEEN ACTIVE SODIUM AND ACTIVE SUGAR TRANSPORT. J Gen Physiol. 1964 Jul;47:1043–1059. doi: 10.1085/jgp.47.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schultz S. G., Fuisz R. E., Curran P. F. Amino acid and sugar transport in rabbit ileum. J Gen Physiol. 1966 May;49(5):849–866. doi: 10.1085/jgp.49.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taylor A. E., Wright E. M., Schultz S. G., Curran P. F. Effect of sugars on ion fluxes in intest-ine. Am J Physiol. 1968 Apr;214(4):836–842. doi: 10.1152/ajplegacy.1968.214.4.836. [DOI] [PubMed] [Google Scholar]
  22. Windmueller H. G., Spaeth A. E., Ganote C. E. Vascular perfusion of isolated rat gut: norepinephrine and glucocorticoid requirement. Am J Physiol. 1970 Jan;218(1):197–204. doi: 10.1152/ajplegacy.1970.218.1.197. [DOI] [PubMed] [Google Scholar]
  23. Wright E. M. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine. J Physiol. 1966 Jul;185(2):486–500. doi: 10.1113/jphysiol.1966.sp007998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Young D. A. Factors controlling the washout of the interstitial space of the isolated, perfused rat heart. J Physiol. 1968 Jun;196(3):747–759. doi: 10.1113/jphysiol.1968.sp008534. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES