Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1972 Sep;225(2):437–455. doi: 10.1113/jphysiol.1972.sp009948

Evidence for disparity detecting neurones in the human visual system

Colin Blakemore, Brian Hague
PMCID: PMC1331114  PMID: 5074403

Abstract

1. It is known that adaptation to a grating pattern causes a rise in the contrast threshold for test gratings of similar spatial frequency and orientation.

2. We find this after-effect also to be disparity-specific. Adaptation to a grating at zero horizontal disparity (at the same distance as the fixation point) causes a greater elevation of threshold for patterns at the same disparity than for those at nearby disparities, closer or more distant than the fixation point.

3. Adaptation to a grating at some disparity other than zero causes a disparity-specific elevation of threshold centred on the adapting disparity.

4. This finding also applies if the observer adapts to a grating but single bright bars are used as the test stimuli.

5. The disparity-specific `tuning curves' revealed by these techniques are quite broad, having a half-width at half-amplitude of several min of disparity.

6. Adaptation to a grating at one disparity causes an apparent change in the distance of test gratings at nearby disparities.

7. We compare these psychophysical experiments with the properties of disparity-selective binocular neurones in the visual cortex of cats and monkeys.

Full text

PDF
437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERRY R. N. Quantitative relations among vernier, real depth, and stereoscopic depth acuities. J Exp Psychol. 1948 Dec;38(6):708–721. doi: 10.1037/h0057362. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B., Blakemore C., Pettigrew J. D. The neural mechanism of binocular depth discrimination. J Physiol. 1967 Nov;193(2):327–342. doi: 10.1113/jphysiol.1967.sp008360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blakemore C. Binocular depth discrimination and the nasotemporal division. J Physiol. 1969 Nov;205(2):471–497. doi: 10.1113/jphysiol.1969.sp008978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blakemore C., Campbell F. W. Adaptation to spatial stimuli. J Physiol. 1969 Jan;200(1):11P–13P. [PubMed] [Google Scholar]
  5. Blakemore C., Campbell F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol. 1969 Jul;203(1):237–260. doi: 10.1113/jphysiol.1969.sp008862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blakemore C., Julesz B. Stereoscopic depth aftereffect produced without monocular cues. Science. 1971 Jan 22;171(3968):286–288. doi: 10.1126/science.171.3968.286. [DOI] [PubMed] [Google Scholar]
  7. Blakemore C., Muncey J. P., Ridley R. M. Perceptual fading of a stabilized cortical image. Nature. 1971 Sep 17;233(5316):204–205. doi: 10.1038/233204a0. [DOI] [PubMed] [Google Scholar]
  8. Blakemore C., Nachmias J., Sutton P. The perceived spatial frequency shift: evidence for frequency-selective neurones in the human brain. J Physiol. 1970 Oct;210(3):727–750. doi: 10.1113/jphysiol.1970.sp009238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blakemore C., Nachmias J. The orientation specificity of two visual after-effects. J Physiol. 1971 Feb;213(1):157–174. doi: 10.1113/jphysiol.1971.sp009374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Blakemore C., Sutton P. Size adaptation: a new aftereffect. Science. 1969 Oct 10;166(3902):245–247. doi: 10.1126/science.166.3902.245. [DOI] [PubMed] [Google Scholar]
  11. Blakemore C. The range and scope of binocular depth discrimination in man. J Physiol. 1970 Dec;211(3):599–622. doi: 10.1113/jphysiol.1970.sp009296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blakemore C. The representation of three-dimensional visual space in the cat's striate cortex. J Physiol. 1970 Jul;209(1):155–178. doi: 10.1113/jphysiol.1970.sp009160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Campbell F. W., Green D. G. Monocular versus binocular visual acuity. Nature. 1965 Oct 9;208(5006):191–192. doi: 10.1038/208191a0. [DOI] [PubMed] [Google Scholar]
  14. Felton T. B., Richards W., Smith R. A., Jr Disparity processing of spatial frequencies in man. J Physiol. 1972 Sep;225(2):349–362. doi: 10.1113/jphysiol.1972.sp009944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilinsky A. S. Orientation-specific effects of patterns of adapting light on visual acuity. J Opt Soc Am. 1968 Jan;58(1):13–18. doi: 10.1364/josa.58.000013. [DOI] [PubMed] [Google Scholar]
  16. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hubel D. H., Wiesel T. N. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature. 1970 Jan 3;225(5227):41–42. doi: 10.1038/225041a0. [DOI] [PubMed] [Google Scholar]
  19. Joshua D. E., Bishop P. O. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res. 1970;10(4):389–416. doi: 10.1007/BF02324766. [DOI] [PubMed] [Google Scholar]
  20. Nikara T., Bishop P. O., Pettigrew J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res. 1968;6(4):353–372. doi: 10.1007/BF00233184. [DOI] [PubMed] [Google Scholar]
  21. Noda H., Creutzfeldt O. D., Freeman R. B., Jr Binocular interaction in the visual cortex of awake cats. Exp Brain Res. 1971 May 26;112(4):406–421. doi: 10.1007/BF00234495. [DOI] [PubMed] [Google Scholar]
  22. Pettigrew J. D., Nikara T., Bishop P. O. Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp Brain Res. 1968;6(4):391–410. doi: 10.1007/BF00233186. [DOI] [PubMed] [Google Scholar]
  23. Richards W. Spatial remapping in the primate visual system. Kybernetik. 1968 Apr;4(4):146–156. doi: 10.1007/BF00288548. [DOI] [PubMed] [Google Scholar]
  24. Richards W. Stereopsis and stereoblindness. Exp Brain Res. 1970;10(4):380–388. doi: 10.1007/BF02324765. [DOI] [PubMed] [Google Scholar]
  25. SCHADE O. H., Sr Optical and photoelectric analog of the eye. J Opt Soc Am. 1956 Sep;46(9):721–739. doi: 10.1364/josa.46.000721. [DOI] [PubMed] [Google Scholar]
  26. Sekuler R. W., Rubin E. L., Cushman W. H. Selectivities of human visual mechanisms for direction of movement and contour orientation. J Opt Soc Am. 1968 Aug;58(8):1146–1150. doi: 10.1364/josa.58.001146. [DOI] [PubMed] [Google Scholar]
  27. Sullivan G. D., Georgeson M. A., Oatley K. Channels for spatial frequency selection and the detection of single bars by the human visual system. Vision Res. 1972 Mar;12(3):383–394. doi: 10.1016/0042-6989(72)90083-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES