Abstract
1. There is an outer disinhibitory zone surrounding the classical inhibitory surround of the retinal ganglion cell receptive field.
2. The disinhibitory surround is strong and narrow in `sustained' cells but weak and laterally spread in `transient' cells.
3. The disinhibitory surround can be demonstrated using a black spot as a probing stimulus as well as by a white spot, and is therefore not an artifact of scattered light.
4. Stimulation with a light spot in the disinhibitory zone gives an increase in firing to `stimulus on' in on-centre cells and to `stimulus off' in off-centre cells.
5. The disinhibitory surround may be revealed by plotting the latency of the first spike discharge following stimulation against position in the receptive field. The disinhibitory zone shows a decrease in latency to the centre-type stimulus.
6. The disinhibitory surround may be revealed by plotting the threshold intensity of a spot against position in the receptive field. It is thus a feature of the sensitivity gradients of both `transient' and `sustained' cells.
7. Using two spots, one at the centre of the receptive field and the other at varying distances from the receptive field centre, dynamic interactions between the centre, inhibitory and disinhibitory zones are demonstrated. A spot presented in the disinhibitory zone causes an enhancement of the centre response when flashing in phase with the centre spot, while it causes inhibition of the centre response when presented 180° out of phase.
8. A scheme for the anatomical basis of the disinhibitory surround is proposed, and the relation of disinhibition to the spatial transfer characteristics of the visual pathways is discussed.
Full text
PDF

































Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARDEN G. B., BROWN K. T. SOME PROPERTIES OF COMPONENTS OF THE CAT ELECTRORETINOGRAM REVEALED BY LOCAL RECORDING UNDER OIL. J Physiol. 1965 Feb;176:429–461. doi: 10.1113/jphysiol.1965.sp007560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow H. B., Levick W. R. Changes in the maintained discharge with adaptation level in the cat retina. J Physiol. 1969 Jun;202(3):699–718. doi: 10.1113/jphysiol.1969.sp008836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blakemore C., Campbell F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol. 1969 Jul;203(1):237–260. doi: 10.1113/jphysiol.1969.sp008862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonds A. B., Enroth-Cugell C., Pinto L. H. Image quality of the cat eye measured during retinal ganglion cell experiments. J Physiol. 1972 Jan;220(2):383–401. doi: 10.1113/jphysiol.1972.sp009713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Büttner U., Grüsser O. J. Quantitative Untersuchungen der räumlichen Erregungssummation im rezeptiven Feld retinaler Neurone der Katze. I. Reizung mit 2 synchronen Lichtpunkten. Kybernetik. 1968 Jan;4(3):81–94. doi: 10.1007/BF00288928. [DOI] [PubMed] [Google Scholar]
- Campbell F. W., Cooper G. F., Enroth-Cugell C. The spatial selectivity of the visual cells of the cat. J Physiol. 1969 Jul;203(1):223–235. doi: 10.1113/jphysiol.1969.sp008861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol. 1970 May;207(3):635–652. doi: 10.1113/jphysiol.1970.sp009085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell F. W., Robson J. G. Application of Fourier analysis to the visibility of gratings. J Physiol. 1968 Aug;197(3):551–566. doi: 10.1113/jphysiol.1968.sp008574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland B. G., Dubin M. W., Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol. 1971 Sep;217(2):473–496. doi: 10.1113/jphysiol.1971.sp009581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland B. G., Enroth-Cugell C. Quantitative aspects of gain and latency in the cat retina. J Physiol. 1970 Jan;206(1):73–91. doi: 10.1113/jphysiol.1970.sp008998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland B. G., Enroth-cugell C. Quantitative aspects of sensitivity and summation in the cat retina. J Physiol. 1968 Sep;198(1):17–38. doi: 10.1113/jphysiol.1968.sp008591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford B. H., Ikeda H. An inexpensive photostimulator for searching the receptive fields of a single unit in the visualpathway. J Physiol. 1970 Mar;207(1):6P–7P. [PubMed] [Google Scholar]
- Creutzfeldt O. D., Sakmann B., Scheich H., Korn A. Sensitivity distribution and spatial summation within receptive-field center of retinal on-center ganglion cells and transfer function of the retina. J Neurophysiol. 1970 Sep;33(5):654–671. doi: 10.1152/jn.1970.33.5.654. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Werblin F. S. Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J Neurophysiol. 1969 May;32(3):315–338. doi: 10.1152/jn.1969.32.3.315. [DOI] [PubMed] [Google Scholar]
- Dreher B., Marchiafava P. L., Zernicki B. Studies on the visual fixation reflex. II. The neural mechanism of the fixation reflex in normal and pretrigeminal cats. Acta Biol Exp (Warsz) 1965;25(3):207–217. [PubMed] [Google Scholar]
- Dubin M. W. The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J Comp Neurol. 1970 Dec;140(4):479–505. doi: 10.1002/cne.901400406. [DOI] [PubMed] [Google Scholar]
- Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FITZHUGH R. The statistical detection of threshold signals in the retina. J Gen Physiol. 1957 Jul 20;40(6):925–948. doi: 10.1085/jgp.40.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernald R., Chase R. An improved method for plotting retinal landmarks and focusing the eyes. Vision Res. 1971 Jan;11(1):95–96. doi: 10.1016/0042-6989(71)90207-0. [DOI] [PubMed] [Google Scholar]
- Fukada Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res. 1971 Mar;11(3):209–226. doi: 10.1016/0042-6989(71)90186-6. [DOI] [PubMed] [Google Scholar]
- Fukada Y., Saito H. The relationship between response characteristics to flicker stimulation and receptive field organization in the cat's optic nerve fibers. Vision Res. 1971 Mar;11(3):227–240. doi: 10.1016/0042-6989(71)90187-8. [DOI] [PubMed] [Google Scholar]
- Granit R. Stimulus intensity in relation to excitation and pre- and post-excitatory inhibition in isolated elements of mammalian retinae. J Physiol. 1944 Jun 15;103(1):103–118. doi: 10.1113/jphysiol.1944.sp004065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Integrative action in the cat's lateral geniculate body. J Physiol. 1961 Feb;155:385–398. doi: 10.1113/jphysiol.1961.sp006635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi Y., Sumitomo I., Iwama K. Activation of lateral geniculate neurons by electrical stimulation of superior colliculus in cats. Jpn J Physiol. 1967 Dec 15;17(6):638–651. doi: 10.2170/jjphysiol.17.638. [DOI] [PubMed] [Google Scholar]
- Ikeda H., Wright M. J. Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res. 1972 Sep;12(9):1465–1476. doi: 10.1016/0042-6989(72)90172-1. [DOI] [PubMed] [Google Scholar]
- Ikeda H., Wright M. J. How large is the receptive field of a single retinal ganglion cell? J Physiol. 1971;217 (Suppl):52P–53P. [PubMed] [Google Scholar]
- Ikeda H., Wright M. J. Outer excitatory ('disinhibition') surround to receptive fields of retinal ganglion cells. J Physiol. 1972 Jul;224(1):26P–27P. [PubMed] [Google Scholar]
- KUFFLER S. W. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953 Jan;16(1):37–68. doi: 10.1152/jn.1953.16.1.37. [DOI] [PubMed] [Google Scholar]
- MCILWAIN J. T. RECEPTIVE FIELDS OF OPTIC TRACT AXONS AND LATERAL GENICULATE CELLS: PERIPHERAL EXTENT AND BARBITURATE SENSITIVITY. J Neurophysiol. 1964 Nov;27:1154–1173. doi: 10.1152/jn.1964.27.6.1154. [DOI] [PubMed] [Google Scholar]
- Maffei L., Cervetto L. Dynamic interactions in retinal receptive fields. Vision Res. 1968 Oct;8(10):1299–1303. doi: 10.1016/0042-6989(68)90051-5. [DOI] [PubMed] [Google Scholar]
- Maffei L., Fiorentini A., Cervetto L. Homeostasis in retinal receptive fields. J Neurophysiol. 1971 Jul;34(4):579–587. doi: 10.1152/jn.1971.34.4.579. [DOI] [PubMed] [Google Scholar]
- Maffei L., Fiorentini A. Retinogeniculate convergence and analysis of contrast. J Neurophysiol. 1972 Jan;35(1):65–72. doi: 10.1152/jn.1972.35.1.65. [DOI] [PubMed] [Google Scholar]
- McIlwain J. T. Some evidence concerning the physiological basis of the periphery effect in the cat's retina. Exp Brain Res. 1966;1(3):265–271. doi: 10.1007/BF00234346. [DOI] [PubMed] [Google Scholar]
- Poggio G. F., Baker F. H., Lamarre Y., Sanseverino E. R. Afferent inhibition at input to visual cortex of the cat. J Neurophysiol. 1969 Nov;32(6):892–915. doi: 10.1152/jn.1969.32.6.892. [DOI] [PubMed] [Google Scholar]
- Schneider G. E. Two visual systems. Science. 1969 Feb 28;163(3870):895–902. doi: 10.1126/science.163.3870.895. [DOI] [PubMed] [Google Scholar]
- Singer W., Creutzfeldt O. D. Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat. Exp Brain Res. 1970;10(3):311–330. doi: 10.1007/BF00235054. [DOI] [PubMed] [Google Scholar]
- Stone J., Fabian M. Summing properties of the cat's retinal ganglion cell. Vision Res. 1968 Aug;8(8):1023–1040. doi: 10.1016/0042-6989(68)90075-8. [DOI] [PubMed] [Google Scholar]
- Sullivan G. D., Georgeson M. A., Oatley K. Channels for spatial frequency selection and the detection of single bars by the human visual system. Vision Res. 1972 Mar;12(3):383–394. doi: 10.1016/0042-6989(72)90083-1. [DOI] [PubMed] [Google Scholar]
- WIESEL T. N. Receptive fields of ganglion cells in the cat's retina. J Physiol. 1960 Oct;153:583–594. doi: 10.1113/jphysiol.1960.sp006557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]
- Westheimer G., Wiley R. W. Distance effects in human scotopic retinal interaction. J Physiol. 1970 Jan;206(1):129–143. doi: 10.1113/jphysiol.1970.sp009002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoon M. Influence of adaptation level on response pattern and sensitivity of ganglion cells in the cat's retina. J Physiol. 1972 Feb;221(1):93–104. doi: 10.1113/jphysiol.1972.sp009741. [DOI] [PMC free article] [PubMed] [Google Scholar]