Abstract
1. The properties of peptidases located in the brush borders of rat small intestinal mucosal cells have been investigated using a new method for the assay of peptidase activity. In this method amino acids produced by hydrolysis of peptides are oxidized by ophidian L-amino acid oxidase and the hydrogen peroxide produced during reoxidation of the reduced enzyme is estimated spectrophotometrically.
2. 10-20% of the total cellular peptidase activity and 50% of the leucylnaphthylamidase (LNAase) activity were found to be tightly bound to the brush borders and to possess different substrate specificity from the supernatant peptidase activity.
3. Evidence from kinetic and competition studies indicates the presence of more than one peptidase in the brush borders. The peptidases exhibit pH optima of 8·0-8·5, are inhibited by EDTA, but are not usually activated by divalent metal ions. The brush border peptidases hydrolyse di- and tripeptides, some oligopeptides, leucinamide and leucyl-β-naphthylamine. On the basis of the Michaelis constants, these substrates differ in their affinities for the enzymes.
4. It is proposed that the brush border peptidases serve an analogous function in the terminal stages of protein digestion to that of the disaccharidases in the case of carbohydrate digestion and absorption.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEEKEN W. L., NORMAN M. DEGRADATION OF ALBUMIN BY ISOLATED SEGMENTS OF THE GASTROINTESTINAL TRACT IN RATS. Proc Soc Exp Biol Med. 1964 Oct;117:24–27. doi: 10.3181/00379727-117-29487. [DOI] [PubMed] [Google Scholar]
- Bender A. E., Krebs H. A. The oxidation of various synthetic alpha-amino-acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of cobra venom and the l- and d-amino-acid oxidases of Neurospora crassa. Biochem J. 1950 Feb;46(2):210–219. doi: 10.1042/bj0460210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd C. A., Parsons D. S., Thomas A. V. The presence of K+dependent phophatase in intestinal epithelial cell brush borders isolated by a new method. Biochim Biophys Acta. 1968 Jun 11;150(4):723–726. doi: 10.1016/0005-2736(68)90061-8. [DOI] [PubMed] [Google Scholar]
- DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
- Eichholz A. Studies on the organization of the brush border in intestinal epithelial cells. V. Subfractionation of enzymatic activities of the microvillus membrane. Biochim Biophys Acta. 1968 Aug;163(1):101–107. doi: 10.1016/0005-2736(68)90037-0. [DOI] [PubMed] [Google Scholar]
- Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedrich M., Noack R., Schenk G. Zur Lokalisation von peptidatischen und proteolytischen Aktvitäten in isolierten Bürstensäumen aus der Mucosa des Rattendünndarmes. Biochem Z. 1965 Dec 31;343(4):346–353. [PubMed] [Google Scholar]
- Fujita M., Ota H., Kawai K., Matsui H., Nakao M. Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase. Biochim Biophys Acta. 1972 Aug 9;274(2):336–347. doi: 10.1016/0005-2736(72)90181-2. [DOI] [PubMed] [Google Scholar]
- GOLDBARG J. A., RUTENBURG A. M. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases. Cancer. 1958 Mar-Apr;11(2):283–291. doi: 10.1002/1097-0142(195803/04)11:2<283::aid-cncr2820110209>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
- HOLT J. H., MILLER D. The localization of phosphomonoesterase and aminopeptidase in brush borders isolated from intestinal epithelial cells. Biochim Biophys Acta. 1962 Apr 9;58:239–243. doi: 10.1016/0006-3002(62)91004-1. [DOI] [PubMed] [Google Scholar]
- Heizer W. D., Laster L. Hydrolases in the mucosa of rat small intestine for phenylalanine-containing dipeptides. Biochim Biophys Acta. 1969;185(2):409–423. doi: 10.1016/0005-2744(69)90434-3. [DOI] [PubMed] [Google Scholar]
- Heizer W. D., Laster L. Peptide hydrolase activities of the mucosa of human small intestine. J Clin Invest. 1969 Jan;48(1):210–228. doi: 10.1172/JCI105970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josefsson L., Lindberg T. Intestinal dipeptidases. 3. Characterization and determination of dipeptidase activity in adult rat intestinal mucosa. Acta Physiol Scand. 1966 Apr;66(4):410–418. doi: 10.1111/j.1748-1716.1966.tb03218.x. [DOI] [PubMed] [Google Scholar]
- Josefsson L., Lindberg T. Intestinal dipeptidases. I. Spectrophotometric determination and characterization of dipeptidase activity in pig intestinal mucosa. Biochim Biophys Acta. 1965 Jul 29;105(1):149–161. doi: 10.1016/s0926-6593(65)80183-7. [DOI] [PubMed] [Google Scholar]
- Josefsson L., Norén O., Sjöström H. Comparison of dipeptidase activity in different tissues of the pig. Acta Physiol Scand. 1968 Jan-Feb;72(1):108–114. doi: 10.1111/j.1748-1716.1968.tb03832.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewis W. H., Harris H. Human red cell peptidases. Nature. 1967 Jul 22;215(5099):351–355. doi: 10.1038/215351a0. [DOI] [PubMed] [Google Scholar]
- Matthews D. M., Lis M. T., Cheng B., Crampton R. F. Observations on the intestinal absorption of some oligopeptides of methionine and glycine in the rat. Clin Sci. 1969 Dec;37(3):751–764. [PubMed] [Google Scholar]
- NACHLAS M. M., MONIS B., ROSENBATT D., SELIGMAN A. M. Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol. 1960 Apr;7:261–264. doi: 10.1083/jcb.7.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWEY H., SMYTH D. H. Cellular mechanisms in intestinal transfer of amino acids. J Physiol. 1962 Dec;164:527–551. doi: 10.1113/jphysiol.1962.sp007035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWEY H., SMYTH D. H. Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol. 1960 Jul;152:367–380. doi: 10.1113/jphysiol.1960.sp006493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parson D. S., Prichard J. S. Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine. J Physiol. 1971 Jan;212(2):299–319. doi: 10.1113/jphysiol.1971.sp009326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons D. S., Prichard J. S. Disaccharide absorption by amphibian small intestine in vitro. J Physiol. 1968 Nov;199(1):137–150. doi: 10.1113/jphysiol.1968.sp008643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters T. J. Studies on the subcellular localization of peptidases in intestinal mucosa. Gut. 1968 Dec;9(6):727–727. [PubMed] [Google Scholar]
- Peters T. J. The subcellular localization of di- and tri-peptide hydrolase activity in guinea-pig small intestine. Biochem J. 1970 Nov;120(1):195–203. doi: 10.1042/bj1200195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINSON G. B., SHAW B. The hydrolysis of dipeptides by different regions of rat small intestine. Biochem J. 1960 Nov;77:351–356. doi: 10.1042/bj0770351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINSON G. B. The distribution of peptidases in subcellular fractions from the mucosa of the small intestine of the rat. Biochem J. 1963 Jul;88:162–168. doi: 10.1042/bj0880162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes J. B., Eichholz A., Crane R. K. Studies on the organization of the brush border in intestinal epithelial cells. IV. Aminopeptidase activity in microvillus membranes of hamster intestinal brush borders. Biochim Biophys Acta. 1967;135(5):959–965. doi: 10.1016/0005-2736(67)90065-x. [DOI] [PubMed] [Google Scholar]
- UGOLEV A. M., IESUITOVA N. N., TIMOFEEVA N. M., FEDIUSHINA I. N. LOCATION OF HYDROLYSIS OF CERTAIN DISACCHARIDES AND PEPTIDES IN THE SMALL INTESTINE. Nature. 1964 May 23;202:807–809. doi: 10.1038/202807a0. [DOI] [PubMed] [Google Scholar]
- UGOLEV A. M. MEMBRANE (CONTACT) DIGESTION. Physiol Rev. 1965 Jul;45:555–595. doi: 10.1152/physrev.1965.45.3.555. [DOI] [PubMed] [Google Scholar]
- UGOLEV A. Influence of the surface of the small intestine on enzymatic hydrolysis of starch by enzymes. Nature. 1960 Nov 12;188:588–589. doi: 10.1038/188588b0. [DOI] [PubMed] [Google Scholar]
- Vernon H. M. The ereptic power of tissues as a measure of functional capacity. J Physiol. 1905 Nov 9;33(2):81–100. doi: 10.1113/jphysiol.1905.sp001112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernon H. M. The universal presence of erepsin in animal tissues. J Physiol. 1904 Dec 30;32(1):33–50. doi: 10.1113/jphysiol.1904.sp001063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong-Leung Y. L., Kenny A. J. Some properties of a microsomal peptidase in rat kidney. Biochem J. 1968 Nov;110(2):5P–5P. [PMC free article] [PubMed] [Google Scholar]
- Woodley J. F., Kenny A. J. The presence of pancreatic proteases in particulate preparations of rat intestinal mucosa. Biochem J. 1969 Nov;115(3):18P–19P. doi: 10.1042/bj1150018pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
