Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1972 Dec;227(1):217–231. doi: 10.1113/jphysiol.1972.sp010028

Ionic basis of membrane potentials of epithelial cells in rat small intestine

R J C Barry, Jacqueline Eggenton
PMCID: PMC1331271  PMID: 4646579

Abstract

1. Potentials across the mucosal and serosal membranes of the epithelial cells of rat jejunum together with transmural potentials were recorded using everted sac preparations.

2. Ionic changes in either mucosal or serosal fluids affect mucosal or serosal membrane potentials respectively with comparable changes in the transmural potential. The contralateral membrane potential is relatively unaffected.

3. Replacement of mucosal sodium chloride by potassium chloride or lithium chloride had little effect on potentials, but its replacement by mannitol or Tris chloride increased the negativity of the mucosal potential, giving linear relationships against log10[Na]m with slopes of 41·4 and 30·7 mV respectively for tenfold change in [Na]m.

4. At constant [Na]m, potassium or lithium increased the mucosal potential by 25·7 and 19·8 mV respectively for tenfold concentration changes.

5. Qualitatively similar changes occurred in the serosal potential when the ionic composition of the serosal fluid was varied.

6. Mucosal potential changes in response to modifications of the ionic composition of the mucosal fluid were the same in the presence and absence of galactose.

7. Sodium and potassium diffusion potentials largely determine both the mucosal and serosal membrane potentials. For the mucosal membrane, PK:PNa is 1·26:1, and is probably higher for the serosal membrane. Chloride makes no significant contribution to membrane potentials.

8. Potentials generated by the electrogenic sodium pump are superimposed on diffusion potentials across the serosal membrane.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILLIEN M., SCHOFFENIELS E. [Origin of the bioelectric potentials of the intestinal epithelium of the Greek tortoise]. Biochim Biophys Acta. 1961 Nov 11;53:537–548. doi: 10.1016/0006-3002(61)90213-x. [DOI] [PubMed] [Google Scholar]
  2. Barry R. J., Eggenton J. Membrane potentials of epithelial cells in rat small intestine. J Physiol. 1972 Dec;227(1):201–216. doi: 10.1113/jphysiol.1972.sp010027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry R. J., Eggenton J., Smyth D. H., Wright E. M. Relation between sodium concentration, electrical potential and transfer capacity of rat small intestine. J Physiol. 1967 Oct;192(3):647–655. doi: 10.1113/jphysiol.1967.sp008322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berg G. G., Chapman B. The sodium and potassium activated ATPase of intestinal epithelium. I. Location of enzymatic activity in the cell. J Cell Physiol. 1965 Jun;65(3):361–372. doi: 10.1002/jcp.1030650309. [DOI] [PubMed] [Google Scholar]
  5. Esposito G., Faelli A., Capraro V. Effect of sodium on passive permeability of non-electrolytes through the intestinal wall. Experientia. 1969 Jun 15;25(6):603–604. doi: 10.1007/BF01896538. [DOI] [PubMed] [Google Scholar]
  6. Gilles-Baillien M., Schoffeniels E. Bioelectric potentials in the intestinal epithelium of the Greek tortoise. Comp Biochem Physiol. 1967 Oct;23(1):95–104. doi: 10.1016/0010-406x(67)90476-8. [DOI] [PubMed] [Google Scholar]
  7. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Phillips S. F., Code C. F. Sorption of potassium in the small and the large intestine. Am J Physiol. 1966 Sep;211(3):607–613. doi: 10.1152/ajplegacy.1966.211.3.607. [DOI] [PubMed] [Google Scholar]
  9. Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. White J. F., Armstrong W. M. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol. 1971 Jul;221(1):194–201. doi: 10.1152/ajplegacy.1971.221.1.194. [DOI] [PubMed] [Google Scholar]
  11. Wright E. M. Diffusion potentials across the small intestine. Nature. 1966 Oct 8;212(5058):189–190. doi: 10.1038/212189a0. [DOI] [PubMed] [Google Scholar]
  12. ZERAHN K. Studies on the active transport of lithium in the isolated frog skin. Acta Physiol Scand. 1955 Aug 19;33(4):347–358. doi: 10.1111/j.1748-1716.1955.tb01214.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES