Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1973 Jan;228(2):259–277. doi: 10.1113/jphysiol.1973.sp010085

The pharmacology and ionic dependency of amino acid responses in the frog spinal cord

J L Barker, R A Nicoll
PMCID: PMC1331296  PMID: 4346988

Abstract

1. The isolated frog spinal cord was used to study the action of amino acids and their antagonists on primary afferent terminals and motoneurones. The direct effects of these substances were observed by bathing the cord in 20 mM magnesium sulphate (thus blocking synaptic transmission) and recording the polarization level of the dorsal and ventral roots.

2. γ-Aminobutyric acid (GABA) and glutamic acid depolarized the dorsal root and reduced dorsal-root potentials, while glycine produced only weak and variable effects. Glutamic acid also depolarized the ventral root; GABA usually produced either a hyperpolarization or had little effect, while glycine caused variable effects.

3. Bicuculline and picrotoxin antagonized all the synaptic potentials recorded on the dorsal root, as well as the GABA responses on both dorsal and ventral roots.

4. All the synaptic potentials examined remained and were markedly prolonged in the absence of external chloride except the ventral root-dorsal root potential. Replacement of the physiologic complement of chloride during chloride-free perfusion restored the potentials to their original time courses.

5. Depolarizing amino acid responses remained in the absence of external chloride, while hyperpolarizing responses were reversed into depolarizations. Return to normal Ringer solution re-established the hyperpolarizations.

6. Removal of external sodium reversibly abolished the amino acid depolarizations but had little effect on the depolarizations in response to applications of high external potassium concentrations.

7. The results support the hypotheses (a) that GABA mediates presynaptic inhibition by depolarizing primary afferent terminals and (b) that the GABA-mediated depolarization is sodium dependent.

8. The results also indicate that GABA utilizes different ionic mechanisms to mediate presynaptic inhibition (sodium) and post-synaptic inhibition (chloride) in the amphibian (and presumably in the mammal).

Full text

PDF
259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOISTEL J., FATT P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol. 1958 Nov 10;144(1):176–191. doi: 10.1113/jphysiol.1958.sp006094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker J. L., Nicoll R. A. Gamma-aminobutyric acid: role in primary afferent depolarization. Science. 1972 Jun 2;176(4038):1043–1045. doi: 10.1126/science.176.4038.1043. [DOI] [PubMed] [Google Scholar]
  3. CARLSON C. B. SODIUM AND THE DORSAL ROOT POTENTIAL. J Physiol. 1964 Aug;172:295–304. doi: 10.1113/jphysiol.1964.sp007418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis D. R., Duggan A. W., Felix D., Johnston G. A. Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res. 1971 Sep 10;32(1):69–96. doi: 10.1016/0006-8993(71)90156-9. [DOI] [PubMed] [Google Scholar]
  5. Curtis D. R., Duggan A. W., Felix D., Johnston G. A., McLennan H. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 1971 Oct 8;33(1):57–73. doi: 10.1016/0006-8993(71)90305-2. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Hösli L., Johnston G. A., Johnston I. H. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5(3):235–258. doi: 10.1007/BF00238666. [DOI] [PubMed] [Google Scholar]
  7. Curtis D. R., Ryall R. W. Pharmacological studies upon spinal presynaptic fibres. Exp Brain Res. 1966;1(2):195–204. doi: 10.1007/BF00236871. [DOI] [PubMed] [Google Scholar]
  8. Davidoff R. A. Gamma-aminobutyric acid antagonism and presynaptic inhibition in the frog spinal cord. Science. 1972 Jan 21;175(4019):331–333. doi: 10.1126/science.175.4019.331. [DOI] [PubMed] [Google Scholar]
  9. Davidoff R. A. Penicillin and presynaptic inhibition in the amphibian spinal cord. Brain Res. 1972 Jan 14;36(1):218–222. doi: 10.1016/0006-8993(72)90778-0. [DOI] [PubMed] [Google Scholar]
  10. Davidson N., Reisine H. Presynaptic inhibition in cuneate blocked by GABA antagonists. Nat New Biol. 1971 Sep 15;234(50):223–224. doi: 10.1038/newbio234223a0. [DOI] [PubMed] [Google Scholar]
  11. Davidson N., Southwick C. A. Amino acids and presynaptic inhibition in the rat cuneate nucleus. J Physiol. 1971 Dec;219(3):689–708. doi: 10.1113/jphysiol.1971.sp009683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ECCLES J. C., ECCLES R. M., MAGNI F. Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol. 1961 Nov;159:147–166. doi: 10.1113/jphysiol.1961.sp006798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eccles J. C., Magni F., Willis W. D. Depolarization of central terminals of Group I afferent fibres from muscle. J Physiol. 1962 Jan;160(1):62–93. doi: 10.1113/jphysiol.1962.sp006835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Epstein R., Grundfest H. Desensitization of gamma aminobutyric acid (GABA) receptors in muscle fibers of the crab Cancer borealis. J Gen Physiol. 1970 Jul;56(1):33–45. doi: 10.1085/jgp.56.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. FURUKAWA T., FUKAMI Y., ASADA Y. A THIRD TYPE OF INHIBITION IN THE MAUTHNER CELL OF GOLDFISH. J Neurophysiol. 1963 Sep;26:759–774. doi: 10.1152/jn.1963.26.5.759. [DOI] [PubMed] [Google Scholar]
  17. Feltz A. Competitive interaction of beta-guanidino propionic acid and gamma-aminobutyric acid on the muscle fibre of the crayfish. J Physiol. 1971 Jul;216(2):391–401. doi: 10.1113/jphysiol.1971.sp009531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galindo A. GABA-picrotoxin interaction in the mammalian central nervous system. Brain Res. 1969 Aug;14(3):763–767. doi: 10.1016/0006-8993(69)90220-0. [DOI] [PubMed] [Google Scholar]
  20. Gray E. G. Electron microscopy of excitatory and inhibitory synapses: a brief review. Prog Brain Res. 1969;31:141–155. doi: 10.1016/S0079-6123(08)63235-5. [DOI] [PubMed] [Google Scholar]
  21. Grinnell A. D. A study of the interaction between motoneurones in the frog spinal cord. J Physiol. 1966 Feb;182(3):612–648. doi: 10.1113/jphysiol.1966.sp007841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KATZ B., MILEDI R. A STUDY OF SPONTANEOUS MINIATURE POTENTIALS IN SPINAL MOTONEURONES. J Physiol. 1963 Sep;168:389–422. doi: 10.1113/jphysiol.1963.sp007199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KIRALY J. K., PHILLIS J. W. Action of some drugs on the dorsal root potentials of the isolated toad spinal cord. Br J Pharmacol Chemother. 1961 Oct;17:224–231. doi: 10.1111/j.1476-5381.1961.tb01282.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krnjević K. Glutamate and gamma-aminobutyric acid in brain. Nature. 1970 Oct 10;228(5267):119–124. doi: 10.1038/228119a0. [DOI] [PubMed] [Google Scholar]
  25. Krnjević K., Schwartz S. The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res. 1967;3(4):320–336. doi: 10.1007/BF00237558. [DOI] [PubMed] [Google Scholar]
  26. Levy R. A., Repkin A. H., Anderson E. G. The effect of bicuculline on primary afferent terminal excitability. Brain Res. 1971 Sep 10;32(1):261–265. doi: 10.1016/0006-8993(71)90178-8. [DOI] [PubMed] [Google Scholar]
  27. Obata K., Ito M., Ochi R., Sato N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on deiters NEURONES. Exp Brain Res. 1967;4(1):43–57. doi: 10.1007/BF00235216. [DOI] [PubMed] [Google Scholar]
  28. Obata K., Takeda K., Shinozaki H. Further study on pharmacological properties of the cerebellar-induced inhibition of deiters neurones. Exp Brain Res. 1970 Nov 26;11(4):327–342. doi: 10.1007/BF00237907. [DOI] [PubMed] [Google Scholar]
  29. Price J. L., Powell T. P. The synaptology of the granule cells of the olfactory bulb. J Cell Sci. 1970 Jul;7(1):125–155. doi: 10.1242/jcs.7.1.125. [DOI] [PubMed] [Google Scholar]
  30. Rudomin P., Muñoz-Martínez J. A tetrodotoxin-resistant primary afferent depolarization. Exp Neurol. 1969 Sep;25(1):106–115. doi: 10.1016/0014-4886(69)90074-0. [DOI] [PubMed] [Google Scholar]
  31. SCHMIDT R. F. PHARMACOLOGICAL STUDIES ON THE PRIMARY AFFERENT DEPOLARIZATION OF THE TOAD SPINAL CORD. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Jul 2;277:325–346. doi: 10.1007/BF00362515. [DOI] [PubMed] [Google Scholar]
  32. Schmidt R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol. 1971;63:20–101. doi: 10.1007/BFb0047741. [DOI] [PubMed] [Google Scholar]
  33. Takeuchi A., Takeuchi N. A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol. 1969 Nov;205(2):377–391. doi: 10.1113/jphysiol.1969.sp008972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takeuchi A., Takeuchi N. Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J Physiol. 1967 Aug;191(3):575–590. doi: 10.1113/jphysiol.1967.sp008269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takeuchi A., Takeuchi N. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of gamma-aminobutyric acid. J Physiol. 1966 Mar;183(2):433–449. doi: 10.1113/jphysiol.1966.sp007875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tebecis A. K., Phillis J. W. The use of convulsants in studying possible functions of amino acids in the toad spinal cord. Comp Biochem Physiol. 1969 Mar;28(3):1303–1315. doi: 10.1016/0010-406x(69)90568-4. [DOI] [PubMed] [Google Scholar]
  37. Uchizono K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature. 1965 Aug 7;207(997):642–643. doi: 10.1038/207642a0. [DOI] [PubMed] [Google Scholar]
  38. WALL P. D. Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol. 1958 Jun 18;142(1):1–21. doi: 10.1113/jphysiol.1958.sp005997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. ten Bruggencate G., Engberg I. Iontophoretic studies in Deiters' nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin. Brain Res. 1971 Feb 5;25(3):431–448. doi: 10.1016/0006-8993(71)90453-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES