Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1972 Mar;221(3):633–643. doi: 10.1113/jphysiol.1972.sp009772

The effects of calcium and magnesium on sodium fluxes through gills of Carassius auratus, L

A W Cuthbert, J Maetz
PMCID: PMC1331356  PMID: 4622716

Abstract

1. Removal of calcium from Carassius either with chelating agents or by adaptation to deionized water increased sodium influx through the gills twofold.

2. Treatment of fish with chelating agents increased sodium outflux, whereas adaptation to deionized water reduced sodium outflux. The effects on outflux do not appear to result from calcium removal.

3. Addition of calcium (2-20 mM) reversed the effects on influx of chelating agents and of adaptation to deionized water.

4. Magnesium (2-10 mM) was without significant effect on sodium influx, but increased the outflow in fish adapted to deionized water.

Full text

PDF
633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CURRAN P. F., ZADUNAISKY J., GILL J. R., Jr The effect of ethylenediaminetetraacetate on ion permeability of the isolated frog skin. Biochim Biophys Acta. 1961 Sep 16;52:392–395. doi: 10.1016/0006-3002(61)90694-1. [DOI] [PubMed] [Google Scholar]
  2. Cuthbert A. W., Wong P. Y. The effect of metal ions and antidiuretic hormone on oxygen consumption in toad bladder. J Physiol. 1971 Dec;219(1):39–56. doi: 10.1113/jphysiol.1971.sp009648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GARCIAROMEU F., MAETZ J. THE MECHANISM OF SODIUM AND CHLORIDE UPTAKE BY THE GILLS OF A FRESH-WATER FISH, CARASSIUS AURATUS. I. EVIDENCE FOR AN INDEPENDENT UPTAKE OF SODIUM AND CHLORIDE IONS. J Gen Physiol. 1964 Jul;47:1195–1207. doi: 10.1085/jgp.47.6.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kerstetter T. H., Kirschner L. B., Rafuse D. D. On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol. 1970 Sep;56(3):342–359. doi: 10.1085/jgp.56.3.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MAETZ J. Les échanges de sodium chez le poisson Carassius auratus L.; action d'un inhibiteur de l'anhydrase carbonique. J Physiol (Paris) 1956;48(6):1085–1099. [PubMed] [Google Scholar]
  6. Pickford G. E., Pang P. K., Stanley J. G., Fleming W. R. Calcium and fresh-water survival in the euryhaline cyprinodonts, Fundulus kansae and Fundulus heteroclitus. Comp Biochem Physiol. 1966 Jul;18(3):503–509. doi: 10.1016/0010-406x(66)90234-9. [DOI] [PubMed] [Google Scholar]
  7. STOBBART R. H. THE EFFECT OF SOME ANIONS AND CATIONS UPON THE FLUXES AND NET UPTAKE OF SODIUM IN THE LARVA OF AUEDES AEGYPTI (L). J Exp Biol. 1965 Feb;42:29–43. doi: 10.1242/jeb.42.1.29. [DOI] [PubMed] [Google Scholar]
  8. Stobbart R. H. The effect of some anions and cations upon the fluxes and net uptake of chloride in the larva of Aëdes aegypti (L.), and the nature of the uptake mechanisms for sodium and chloride. J Exp Biol. 1967 Aug;47(1):35–57. doi: 10.1242/jeb.47.1.35. [DOI] [PubMed] [Google Scholar]
  9. Sutcliffe D. W. The effect of calcium on sodium influx and loss in Gammarus (amphipoda). J Exp Biol. 1971 Apr;54(2):485–496. doi: 10.1242/jeb.54.2.485. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES