Abstract
1. Cortical collecting ducts were dissected from slices of rabbit kidney, then perfused in vitro.
2. Transtubular electrical potentials were measured before and after abrupt changes in peritubular fluid pH.
3. Variation in peritubular fluid pH, induced either by alteration in HCO3- concentration or in H2PO4-/HPO42- ratio, produced biphasic responses in potential. Thus, reduction in pH caused an immediate fall, and then a prolonged and marked rise, in transtubular potential. The converse occurred on raising the pH.
4. Variation in luminal fluid pH between pH 4·85 and pH 7·35 did not alter this pattern of response.
5. In contrast to the above, reduction of peritubular fluid pH by elevation of PCO2 produced either no effect or a decrease in transtubular potential.
6. The transtubular potential of the cortical collecting duct appears to be a function of the pH gradient across some as yet unidentified part of the wall of the duct.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burg M. B., Issaacson L., Grantham J., Orloff J. Electrical properties of isolated perfused rabbit renal tubules. Am J Physiol. 1968 Oct;215(4):788–794. doi: 10.1152/ajplegacy.1968.215.4.788. [DOI] [PubMed] [Google Scholar]
- Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
- Funder J., Ussing H. H., Wieth J. O. The effects of CO2 and hydrogen ions on active Na transport in the isolated frog skin. Acta Physiol Scand. 1967 Sep;71(1):65–76. doi: 10.1111/j.1748-1716.1967.tb03710.x. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Grantham J. J., Burg M. B. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol. 1971 Jun;220(6):1825–1832. doi: 10.1152/ajplegacy.1971.220.6.1825. [DOI] [PubMed] [Google Scholar]
- KIDDER G. W., 3rd, CEREIJIDO M., CURRAN P. F. TRANSIENT CHANGES IN ELECTRICAL POTENTIAL DIFFERENCES ACROSS FROG SKIN. Am J Physiol. 1964 Oct;207:935–940. doi: 10.1152/ajplegacy.1964.207.4.935. [DOI] [PubMed] [Google Scholar]
- LEAF A., KELLER A., DEMPSEY E. F. STIMULATION OF SODIUM TRANSPORT IN TOAD BLADDER BY ACIDIFICATION OF MUCOSAL MEDIUM. Am J Physiol. 1964 Sep;207:547–552. doi: 10.1152/ajplegacy.1964.207.3.547. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- SNELL F. M., McINTYRE O. R. The effects of carbon dioxide and hydrogen ion on sodium transport in isolated frog skin. Biochim Biophys Acta. 1960 Jun 17;41:89–98. doi: 10.1016/0006-3002(60)90372-3. [DOI] [PubMed] [Google Scholar]
- Spangler S. G., Rehm W. S. Potential responses of nutrient membrane of frog's stomach to step changes in external K+ and Cl- concentrations. Biophys J. 1968 Nov;8(11):1211–1227. doi: 10.1016/S0006-3495(68)86551-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struyvenberg A., Morrison R. B., Relman A. S. Acid-base behavior of separated canine renal tubule cells. Am J Physiol. 1968 May;214(5):1155–1162. doi: 10.1152/ajplegacy.1968.214.5.1155. [DOI] [PubMed] [Google Scholar]
