Abstract
1. The K and Na concentrations in red blood cells (R.B.C.) of 251 animals of the Simmenthal breed and thirty-two animals of other cattle breeds were measured. [Na]cells+[K]cells was 89·4 m-mole/l. cells. [K]cells varied between 7 and 70 and [Na]cells varied in the inverse sense between 15 and 87 m-mole/l. cells.
2. The frequency distribution of animals according to K content of R.B.C.S, which could best be fitted by two superimposed Gaussian curves, suggests that there are two distinct types of cells (high K (HK) cells and low K (LK) cells). Animals with HK cells were considerably less frequent than animals with LK cells.
3. Differences in breed, age or sex do not account for the difference in cation content of R.B.C.S.
4. Cold stored or PCMBS-treated HK cells show a more vigorous cation pump activity than equally treated LK cells.
5. At a Na concentration of 100 mM and a K concentration of 10 mM isolated haemoglobin-free membranes prepared from HK cells exhibit a higher activity of Na+K stimulated (ouabain inhibitable) ATPase activity per mg of protein than membranes from LK cells.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNSTEIN R. E. Potassium and sodium balance in mammalian red cells. Science. 1954 Sep 17;120(3116):459–460. doi: 10.1126/science.120.3116.459. [DOI] [PubMed] [Google Scholar]
- Berenblum I., Chain E. Studies on the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):286–294. doi: 10.1042/bj0320286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN B. L., EVANS J. V., HARRIS H., KING J. W., WARREN F. L. Genetics of haemoglobin and blood potassium differences in sheep. Nature. 1956 Oct 20;178(4538):849–850. doi: 10.1038/178849a0. [DOI] [PubMed] [Google Scholar]
- EVANS J. V., HARRIS H., WARREN F. L. The distribution of haemoglobin and blood potassium types in British breeds of sheep. Proc R Soc Lond B Biol Sci. 1958 Dec 4;149(935):249–262. doi: 10.1098/rspb.1958.0067. [DOI] [PubMed] [Google Scholar]
- EVANS J. V., KING J. W. Genetic control of sodium and potassium concentrations in the red blood cells of sheep. Nature. 1955 Jul 23;176(4473):171–171. doi: 10.1038/176171a0. [DOI] [PubMed] [Google Scholar]
- EVANS J. V., PHILLIPSON A. T. Electrolyte concentrations in the erythrocytes of the goat and ox. J Physiol. 1957 Nov 14;139(1):87–96. doi: 10.1113/jphysiol.1957.sp005877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans J. V. Red cell electrolytes and haemoglobin. Bibl Haematol. 1968;29:41–58. doi: 10.1159/000384593. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Pouchan M. I., Rega A. F. Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation. J Physiol. 1969 Jun;202(2):305–327. doi: 10.1113/jphysiol.1969.sp008813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOYCE C. R., WEATHERALL M. Sodium and potassium movements in sheep erythrocytes of different cation composition. J Physiol. 1958 Aug 6;142(3):453–467. doi: 10.1113/jphysiol.1958.sp006030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- SHEPPARD C. W., MARTIN W. R., BEYL G. Cation exchange between cells and plasma of mammalian blood. II. Sodium and potassium exchange in the sheep, dog, cow, and man and the effect of varying the plasma potassium concentration. J Gen Physiol. 1951 Mar 20;34(4):411–429. doi: 10.1085/jgp.34.4.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J., Rossi G. L. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim Biophys Acta. 1971 Aug 13;241(2):379–392. doi: 10.1016/0005-2736(71)90037-x. [DOI] [PubMed] [Google Scholar]
- TOSTESON D. C. Active transport, genetics, and cellular evolution. Fed Proc. 1963 Jan-Feb;22:19–26. [PubMed] [Google Scholar]
- TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tosteson D. C. Electrolyte composition and transport in red blood cells. Fed Proc. 1967 Nov-Dec;26(6):1805–1812. [PubMed] [Google Scholar]
- Tosteson D. C. Some properties of the plasma menbranes of high potassium and low potassium sheep red cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):577–590. doi: 10.1111/j.1749-6632.1966.tb50183.x. [DOI] [PubMed] [Google Scholar]
- WIDDAS W. F. Difference of cation concentrations in foetal and adult sheep erythrocytes. J Physiol. 1954 Jul 28;125(1):18–9P. [PubMed] [Google Scholar]
- WRIGHT R. D., BRADLEY T. R., NELSON J. F., COGHLAN J. P. Changes in the potassium concentration and metabolism of red blood cells of the lamb. Nature. 1958 Dec 20;182(4651):1742–1743. doi: 10.1038/1821742b0. [DOI] [PubMed] [Google Scholar]
- Whittington E. S., Blostein R. Comparative properties of high potassium and low potassium sheep erythrocyte membrane sodium-activated adenosine triphosphatase. J Biol Chem. 1971 Jun 10;246(11):3518–3523. [PubMed] [Google Scholar]