Abstract
1. Human subjects performed a sustained contraction of the forearm muscles for 4 min in the presence of arterial and venous occlusion.
2. The contraction was maintained at 5% of the maximum voluntary contraction, a tension during which the muscle blood flow might be expected to increase by about three times (Lind & McNicol, 1967).
3. Adenosine triphosphate (ATP) was identified in the venous effluent from occluded exercising forearm, but not in the venous effluent from occluded forearm without exercise.
4. The rate of degradation of ATP was assessed in plasma at 37° C, with an estimate of the percentage loss occurring between sampling and testing. This enabled the rate of appearance of ATP in the blood at the time of exercise to be calculated as approximately 7·5-10·5 μg/min (14-20 n-mole/min). These amounts are compared with 16 μg/min that was infused intra-arterially into human forearm to cause a threefold increase in blood flow (Duff, Patterson & Shepherd, 1954).
5. It is likely that the ATP detected in the venous effluent has active muscle as the source; if so, then the amounts calculated to be released could satisfy the vasodilator requirements of active skeletal muscle.
6. The effects of circulating ATP on respiration and coronary blood flow during exercise is discussed, including the role it may play locally in the production of ischaemic pain.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABOOD L. G., KOKETSU K., MIYAMOTO S. Outflux of various phosphates during membrane depolarization of excitable tissues. Am J Physiol. 1962 Mar;202:469–474. doi: 10.1152/ajplegacy.1962.202.3.469. [DOI] [PubMed] [Google Scholar]
- BALFOUR W. M., SAMSON F. E., Jr Transphosphorylases in the firefly lantern. Arch Biochem Biophys. 1959 Sep;84:140–142. doi: 10.1016/0003-9861(59)90562-4. [DOI] [PubMed] [Google Scholar]
- Barcroft H., Foley T. H., McSwiney R. R. Experiments on the liberation of phosphate from the muscles of the human forearm during vigorous exercise and on the action of sodium phosphate on forearm muscle blood vessels. J Physiol. 1971 Mar;213(2):411–420. doi: 10.1113/jphysiol.1971.sp009390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bielschowsky M., Green H. N., Stoner H. B. The effect of magnesium and calcium on the physiological properties of certain purine derivatives. J Physiol. 1946 Jan 15;104(3):239–252. doi: 10.1113/jphysiol.1946.sp004118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd I. A., Forrester T. The release of adenosine triphosphate from frog skeletal muscle in vitro. J Physiol. 1968 Nov;199(1):115–135. doi: 10.1113/jphysiol.1968.sp008642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudry I. H., Gould M. K. Evidence for the uptake of ATP by rat soleus muscle in vitro. Biochim Biophys Acta. 1970;196(2):320–326. doi: 10.1016/0005-2736(70)90019-2. [DOI] [PubMed] [Google Scholar]
- DAVIES D. F., GROPPER A. L., SCHROEDER H. A. Circulation and respiratory effects of adenosine triphosphate in man. Circulation. 1951 Apr;3(4):543–550. doi: 10.1161/01.cir.3.4.543. [DOI] [PubMed] [Google Scholar]
- DUFF F., PATTERSON G. C., SHEPHERD J. T. A quantitative study of the response to adenosine triphosphate of the blood vessels of the human hand and forearm. J Physiol. 1954 Sep 28;125(3):581–589. doi: 10.1113/jphysiol.1954.sp005182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawes G. S. The vaso-dilator action of potassium. J Physiol. 1941 Jan 14;99(2):224–238. doi: 10.1113/jphysiol.1941.sp003895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drury A. N., Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929 Nov 25;68(3):213–237. doi: 10.1113/jphysiol.1929.sp002608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forrester T. A quantitative estimation of adenosine triphosphate released from human forearm muscle during sustained exercise. J Physiol. 1972 Feb;221(1):25P–26P. [PubMed] [Google Scholar]
- Forrester T., Lind A. R. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol. 1969 Oct;204(2):347–364. doi: 10.1113/jphysiol.1969.sp008917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaddum J. H., Holtz P. The localization of the action of drugs on the pulmonary vessels of dogs and cats. J Physiol. 1933 Jan 16;77(2):139–158. doi: 10.1113/jphysiol.1933.sp002958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. H. The biological significance of the linkages in adenosine triphosphoric acid. J Physiol. 1934 Feb 28;80(4):345–359. doi: 10.1113/jphysiol.1934.sp003095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddy F. J., Scott J. B. Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol Rev. 1968 Oct;48(4):688–707. doi: 10.1152/physrev.1968.48.4.688. [DOI] [PubMed] [Google Scholar]
- Hilton S. M., Vrbová G. Inorganic phosphate--a new candidate for mediator of functional vasodilatation in skeletal muscle. J Physiol. 1970 Feb;206(2):29P–30P. [PubMed] [Google Scholar]
- Holmsen H., Stormorken H., Goote T. M. Kinetic studies on the breakdown of adenosine diphosphate in human plasma. Scand J Clin Lab Invest. 1965;17(Suppl):138+–138+. [PubMed] [Google Scholar]
- KJELLMER I. THE POTASSIUM ION AS A VASODILATOR DURING MUSCULAR EXERCISE. Acta Physiol Scand. 1965 Apr;63:460–468. doi: 10.1111/j.1748-1716.1965.tb04089.x. [DOI] [PubMed] [Google Scholar]
- Lind A. R., McNicol G. W. Local and central circulatory responses to sustained contractions and the effect of free or restricted arterial inflow on post-exercise hyperaemia. J Physiol. 1967 Oct;192(3):575–593. doi: 10.1113/jphysiol.1967.sp008318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellander S., Johansson B., Gray S., Jonsson O., Lundvall J., Ljung B. The effect of hyperosmolarity on intacet and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica. 1967;4(6):310–322. doi: 10.1159/000157715. [DOI] [PubMed] [Google Scholar]
- ROWE G. G., AFONSO S., GURTNER H. P., CHELIUS C. J., LOWE W. C., CASTILLO C. A., CRUMPTON C. W. The systemic and coronary hemodynamic effects of adenosine triphosphate and adenosine. Am Heart J. 1962 Aug;64:228–234. doi: 10.1016/0002-8703(62)90334-4. [DOI] [PubMed] [Google Scholar]
- Scott J. B., Rudko M., Radawski D., Haddy F. J. Role of osmolarity, K+, H+, Mg++, and O2 in local blood flow regulation. Am J Physiol. 1970 Feb;218(2):338–345. doi: 10.1152/ajplegacy.1970.218.2.338. [DOI] [PubMed] [Google Scholar]
- WINBURY M. M., PAPIERSKI D. H., HEMMER M. L., HAMBOURGER W. E. Coronary dilator action of the adenine-ATP series. J Pharmacol Exp Ther. 1953 Nov;109(3):255–260. [PubMed] [Google Scholar]
- WOLF M. M., BERNE R. M. Coronary vasodilator properties of purine and pyrimidine derivatives. Circ Res. 1956 May;4(3):343–348. doi: 10.1161/01.res.4.3.343. [DOI] [PubMed] [Google Scholar]