Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Nov;218(3):573–598. doi: 10.1113/jphysiol.1971.sp009634

The effects of temperature and ions on the current—voltage relation and electrical characteristics of a molluscan neurone

Michael F Marmor
PMCID: PMC1331602  PMID: 5133949

Abstract

1. Current—voltage relations were generated in the Anisodoris giant neurone (G cell) by either current pulses or slow biphasic current ramps.

2. Inward-going rectification occurred during hyperpolarization at warm temperatures (10-15° C), but not at cold temperatures (0-5° C) or in the absence of external K.

3. Replacing external K with Rb eliminated inward-going rectification in the warm, but produced it in the cold. The removal of external Na, Cl or Ca had no effect upon inward-going rectification.

4. At cold temperatures the I—V relation was linear when generated by current pulses, but was non-linear in accordance with the constant field hypothesis when generated by current ramps.

5. A high conductance state developed when the membrane was hyperpolarized beyond a critical potential (approximately — 130 mV in the cold, and — 110 mV in the warm) which was dependent upon external Ca, but not upon K, Na or Cl.

6. Hysteresis was observed in the ramp-generated I—V relation whenever the cell was polarized into the high conductance state.

7. Rectification and the high conductance state appear to involve different mechanisms within the membrane. However, both are dependent upon absolute membrane potential and not the resting potential.

8. The axonal-somatic conductance ratio for the G cell was calculated to be between 2 and 10.

9. The membrane time constant (200-100 msec) and specific resistance (0·1-1·5 × 106 Ω cm2) varied with temperature, membrane potential, and external ions in a manner that correlated with changes in the shape of the I—V relation. In addition, the resistance was dependent upon external Ca.

10. The K permeability (PK), measured during inhibition of inwardgoing rectification, was independent of temperature and membrane potential. However, PNa increased with warming.

11. The specific capacitance was calculated to be 0·5-1·0 μF/cm2. The capacitance increased slightly with warming, but was independent of membrane potential and unaffected by reductions in external K or Na.

Full text

PDF
573

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. THE RUBIDIUM AND POTASSIUM PERMEABILITY OF FROG MUSCLE MEMBRANE. J Physiol. 1964 Dec;175:134–159. doi: 10.1113/jphysiol.1964.sp007508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H. Rectification in muscle membrane. Prog Biophys Mol Biol. 1969;19(2):339–369. [PubMed] [Google Scholar]
  3. Adrian R. H., Slayman C. L. Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. J Physiol. 1966 Jun;184(4):970–1014. doi: 10.1113/jphysiol.1966.sp007961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arvanitaki A., Romey G., Takeuchi H. Variations de la relation caractéristique V(i) de la neuromembrane en fonction de la pO2. Implications fonctionnelles. C R Seances Soc Biol Fil. 1967;161(7):1629–1634. [PubMed] [Google Scholar]
  5. Candia O. A. The hyperpolarizing region of the current-voltage curve in frog skin. Biophys J. 1970 Apr;10(4):323–344. doi: 10.1016/S0006-3495(70)86305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter D. O., Alving B. O. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol. 1968 Jul;52(1):1–21. doi: 10.1085/jgp.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chalazonitis N., Romey G., Arvanitaki A. Résistance de la neuromembrane en fonction de la température (neurones d'Aplysia et d'Helix) C R Seances Soc Biol Fil. 1967;161(7):1625–1628. [PubMed] [Google Scholar]
  8. Cole K. S., Curtis H. J. MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW. J Gen Physiol. 1941 Mar 20;24(4):551–563. doi: 10.1085/jgp.24.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coster H. G. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". Biophys J. 1965 Sep;5(5):669–686. doi: 10.1016/S0006-3495(65)86745-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FESSARD A., TAUC L. Capacité, résistance et variations actives d'impédance d'un soma neuronique. J Physiol (Paris) 1956 May-Jun;48(3):541–544. [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gorman A. L., Marmor M. F. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone. J Physiol. 1970 Nov;210(4):897–917. doi: 10.1113/jphysiol.1970.sp009248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorman A. L., Marmor M. F. Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J Physiol. 1970 Nov;210(4):919–931. doi: 10.1113/jphysiol.1970.sp009249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorman A. L., Mirolli M. Axonal localization of an excitatory post-synaptic potential in a molluscan neurone. J Exp Biol. 1970 Dec;53(3):727–736. doi: 10.1242/jeb.53.3.727. [DOI] [PubMed] [Google Scholar]
  17. Grundfest H. Comparative electrobiology of excitable membranes. Adv Comp Physiol Biochem. 1966;2:1–116. doi: 10.1016/b978-0-12-395511-1.50006-8. [DOI] [PubMed] [Google Scholar]
  18. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ITO M. The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jpn J Physiol. 1957 Dec 20;7(4):297–323. doi: 10.2170/jjphysiol.7.297. [DOI] [PubMed] [Google Scholar]
  20. KERKUT G. A., THOMAS R. C. AN ELECTROGENIC SODIUM PUMP IN SNAIL NERVE CELLS. Comp Biochem Physiol. 1965 Jan;14:167–183. doi: 10.1016/0010-406x(65)90017-4. [DOI] [PubMed] [Google Scholar]
  21. Kandel E. R., Tauc L. Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. J Physiol. 1966 Mar;183(2):287–304. doi: 10.1113/jphysiol.1966.sp007867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koketsu K. Calcium and the excitable cell membrane. Neurosci Res (N Y) 1969;2(0):1–39. [PubMed] [Google Scholar]
  23. Lorenzo Marchiafava P. The effect of temperature change on membrane potential and conductance in Aplysia giant nerve cell. Comp Biochem Physiol. 1970 Jun 15;34(4):847–852. doi: 10.1016/0010-406x(70)91007-8. [DOI] [PubMed] [Google Scholar]
  24. Lux H. D., Müller-Mohnssen H. Stationäre Strom-Spannungskennlinien von Blutegel-Ganglien-Zellen. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):287–295. [PubMed] [Google Scholar]
  25. MAISKII V. A. ELEKTRICHESKIE KHARAKTERISTIKE POVERKHNOSTNO I MEMBRANY GIGANTSKIKH NERVNYKH KLETOK HELIX POMATIA. Fiziol Zh SSSR Im I M Sechenova. 1963 Dec;49:1468–1474. [PubMed] [Google Scholar]
  26. Marmor M. F. Anomalous rectification and electrogenic sodium transport in a molluscan neuron. Nature. 1970 Jun 27;226(5252):1252–1253. doi: 10.1038/2261252a0. [DOI] [PubMed] [Google Scholar]
  27. Marmor M. F., Gorman A. L. Membrane potential as the sum of ionic and metabolic components. Science. 1970 Jan 2;167(3914):65–67. doi: 10.1126/science.167.3914.65. [DOI] [PubMed] [Google Scholar]
  28. Marmor M. F. The independence of electrogenic sodium transport and membrane potential in a molluscan neurone. J Physiol. 1971 Nov;218(3):599–608. doi: 10.1113/jphysiol.1971.sp009635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mauro A. Space Charge Regions in Fixed Charge Membranes and the Associated Property of Capacitance. Biophys J. 1962 Mar;2(2 Pt 1):179–198. doi: 10.1016/s0006-3495(62)86848-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meves H. The ionic requirements for the production of action potentials in helix pomatia neurones. Pflugers Arch. 1968;304(3):215–241. doi: 10.1007/BF00592126. [DOI] [PubMed] [Google Scholar]
  31. Murray R. W. The effect of temperature on the membrane properties of neurons in the visceral ganglion of Aplysia. Comp Biochem Physiol. 1966 Jun;18(2):291–303. doi: 10.1016/0010-406x(66)90188-5. [DOI] [PubMed] [Google Scholar]
  32. Ochs A. L. Changes in membrane properties with hyperpolarization in snail neurons. Am J Physiol. 1967 Jul;213(1):16–20. doi: 10.1152/ajplegacy.1967.213.1.16. [DOI] [PubMed] [Google Scholar]
  33. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  34. RALL W. Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959 Nov;1:491–527. doi: 10.1016/0014-4886(59)90046-9. [DOI] [PubMed] [Google Scholar]
  35. RALL W. Membrane potential transients and membrane time constant of motoneurons. Exp Neurol. 1960 Oct;2:503–532. doi: 10.1016/0014-4886(60)90029-7. [DOI] [PubMed] [Google Scholar]
  36. RUDOLPH G., STAMPFLI R. Anodenöffnungserregungen einzelner Ranvier-Schnürringe. Pflugers Arch. 1958;267(5):524–531. doi: 10.1007/BF00361739. [DOI] [PubMed] [Google Scholar]
  37. Ruiz-Manresa F., Ruarte A. C., Schwartz T. L., Grundfest H. Potassium inactivation and impedance changes during spike electrogenesis in eel electroplaques. J Gen Physiol. 1970 Jan;55(1):33–47. doi: 10.1085/jgp.55.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sperelakis N. Changes in conductances of frog sartorius fibers produced by CO2, ReO4-, and temperature. Am J Physiol. 1969 Oct;217(4):1069–1075. doi: 10.1152/ajplegacy.1969.217.4.1069. [DOI] [PubMed] [Google Scholar]
  39. TAUC L. Etude de l'activité élémentaire des cellules du ganglion abdominal de l'Aplysie. J Physiol (Paris) 1955;47(4):769–792. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES