Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Dec;219(2):303–330. doi: 10.1113/jphysiol.1971.sp009663

Permeability of lung capillaries and alveoli to non-electrolytes in the foetal lamb. With an Appendix

I C S Normand, R E Olver, E O R Reynolds, L B Strang, Keasley Welch
PMCID: PMC1331632  PMID: 5158386

Abstract

1. Two sets of experiments were performed on intact foetal lambs exteriorized at Caesarean section; in one set radioactively labelled test substances (inulin, sucrose, mannitol, erythritol, urea) were injected I.V. either singly or in pairs and then followed in plasma, lung lymph and alveolar liquid; in the other set labelled test substances (inulin, sucrose, mannitol, erythritol, D-serine, L-serine, D-α-alanine, urea, water, thiourea, N-ethylthiourea) were introduced singly, in pairs, or sequentially into alveolar liquid and their concentration followed in alveolar liquid and plasma.

2. Inulin was found to cross lung capillary walls but not alveolar walls. Measurements of its concentration following injection into alveolar liquid were used to determine the volume of foetal alveolar liquid (mean = 30 ml./kg) and its rate of formation (mean = 0·036 ml./min.kg). The volume of the lung interstitial space was determined from previous experiments in which [125I]PVP had been injected I.V. then measured after 2 hr in lung tissue and lung lymph (mean = 10·4% foetal lung weight after withdrawal of liquid; ≈ 20% wet lung tissue weight).

3. Transfer constants (min-1) for lung capillaries (KC) and alveoli (K0) were obtained from the experimental results by compartmental analysis. Permeability constants (PC and PO, cm/sec) were derived from them using estimates for capillary and alveolar areas. For lipid insoluble molecules PC and PO both increased with decreasing molecular radius, the effect being much greater for PO than PC. PO was also shown to increase with lipid solubility of the test molecule even though molecular size increased with lipid solubility in the series tested (urea, thiourea, N-ethylthiourea).

4. Analysis of the results for the lipid insoluble substances in terms of pore theory gave a value of pore radius for lung capillaries of 150 Å and for alveolar walls of 5·5 Å. The smallness of the pores in alveolar walls is thought to prevent proteins and other plasma solutes from penetrating alveoli, and to determine the forces which operate in the osmotic flow of water across alveolar walls.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERS G. K. MOLECULAR EXCLUSION AND RESTRICTED DIFFUSION PROCESSES IN MOLECULAR-SIEVE CHROMATOGRAPHY. Biochemistry. 1964 May;3:723–730. doi: 10.1021/bi00893a021. [DOI] [PubMed] [Google Scholar]
  2. Body R. D., Hill J. R., Humphreys P. W., Normand I. C., Reynolds E. O., Strang L. B. Permeability of lung capillaries to macromolecules in foetal and new-born lambs and sheep. J Physiol. 1969 May;201(3):567–588. doi: 10.1113/jphysiol.1969.sp008773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
  4. Cameron G. R., Courtice F. C. The production and removal of oedema fluid in the lung after exposure to carbonyl chloride (phosgene). J Physiol. 1946 Sep 18;105(2):175–185. [PMC free article] [PubMed] [Google Scholar]
  5. Courtice F. C., Phipps P. J. The absorption of fluids from the lungs. J Physiol. 1946 Sep 18;105(2):186–190. [PMC free article] [PubMed] [Google Scholar]
  6. DURBIN R. P. Osmotic flow of water across permeable cellulose membranes. J Gen Physiol. 1960 Nov;44:315–326. doi: 10.1085/jgp.44.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferry J. D. STATISTICAL EVALUATION OF SIEVE CONSTANTS IN ULTRAFILTRATION. J Gen Physiol. 1936 Sep 20;20(1):95–104. doi: 10.1085/jgp.20.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GITLIN D., CRAIG J. M. The nature of the hyaline membrane in asphyxia of the newborn. Pediatrics. 1956 Jan;17(1):64–71. [PubMed] [Google Scholar]
  9. GOLDSTEIN D. A., SOLOMON A. K. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J Gen Physiol. 1960 Sep;44:1–17. doi: 10.1085/jgp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodale R. L., Goetzman B., Visscher M. B. Hypoxia and iodoacetic acid and alveolocapillary barrier permeability to albumin. Am J Physiol. 1970 Nov;219(5):1226–1230. doi: 10.1152/ajplegacy.1970.219.5.1226. [DOI] [PubMed] [Google Scholar]
  11. Humphreys P. W., Normand I. C., Reynolds E. O., Strang L. B. Pulmonary lymph flow and the uptake of liquid from the lungs of the lamb at the start of breathing. J Physiol. 1967 Nov;193(1):1–29. doi: 10.1113/jphysiol.1967.sp008340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
  13. Lawrence J. H., Loomis W. F., Tobias C. A., Turpin F. H. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946 Dec 6;105(3):197–204. [PMC free article] [PubMed] [Google Scholar]
  14. Normand I. C., Reynolds E. O., Strang L. B. Passage of macromolecules between alveolar and interstitial spaces in foetal and newly ventilated lungs of the lamb. J Physiol. 1970 Sep;210(1):151–164. doi: 10.1113/jphysiol.1970.sp009201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  16. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  17. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  18. ROSS E. J. The transfer of non-electrolytes across the blood-aqueous barrier. J Physiol. 1951 Jan;112(1-2):229–237. doi: 10.1113/jphysiol.1951.sp004525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rich G. T., Sha'afi R. I., Barton T. C., Solomon A. K. Permeability studies on red cell membranes of dog, cat, and beef. J Gen Physiol. 1967 Nov;50(10):2391–2405. doi: 10.1085/jgp.50.10.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rose G. A. Measurement of glomerular filtration rate by inulin clearance without urine collection. Br Med J. 1969 Apr 12;2(5649):91–93. doi: 10.1136/bmj.2.5649.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHULTZ S. G., SOLOMON A. K. Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol. 1961 Jul;44:1189–1199. doi: 10.1085/jgp.44.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SWANN H. G., SPAFFORD N. R. Body salt and water changes during fresh and sea water drowning. Tex Rep Biol Med. 1951;9(2):356–382. [PubMed] [Google Scholar]
  23. Schneeberger-Keeley E. E., Karnovsky M. J. The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J Cell Biol. 1968 Jun;37(3):781–793. doi: 10.1083/jcb.37.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Solomon A. K. Characterization of biological membranes by equivalent pores. J Gen Physiol. 1968 May 1;51(5):335–364. [PMC free article] [PubMed] [Google Scholar]
  25. Staub N. C., Nagano H., Pearce M. L. Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J Appl Physiol. 1967 Feb;22(2):227–240. doi: 10.1152/jappl.1967.22.2.227. [DOI] [PubMed] [Google Scholar]
  26. TAYLOR A. E., GUYTON A. C., BISHOP V. S. PERMEABILITY OF THE ALVEOLAR MEMBRANE TO SOLUTES. Circ Res. 1965 Apr;16:353–362. doi: 10.1161/01.res.16.4.353. [DOI] [PubMed] [Google Scholar]
  27. Taylor A. E., Gaar K. A., Jr Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol. 1970 Apr;218(4):1133–1140. doi: 10.1152/ajplegacy.1970.218.4.1133. [DOI] [PubMed] [Google Scholar]
  28. WEST J. B., DOLLERY C. T., HEARD B. E. INCREASED PULMONARY VASCULAR RESISTANCE IN THE DEPENDENT ZONE OF THE ISOLATED DOG LUNG CAUSED BY PERIVASCULAR EDEMA. Circ Res. 1965 Sep;17:191–206. doi: 10.1161/01.res.17.3.191. [DOI] [PubMed] [Google Scholar]
  29. Wangensteen O. D., Wittmers L. E., Jr, Johnson J. A. Permeability of the mammalian blood-gas barrier and its components. Am J Physiol. 1969 Apr;216(4):719–727. doi: 10.1152/ajplegacy.1969.216.4.719. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES