Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Mar;213(2):455–474. doi: 10.1113/jphysiol.1971.sp009393

The transformation of myosin in cross-innervated rat muscles

M Bárány, R I Close
PMCID: PMC1331771  PMID: 4252498

Abstract

1. The characteristics of isometric twitch and tetanic contractions have been determined for normal (N-EDL, N-SOL), self-innervated (S-EDL, S-SOL) and cross-innervated (X-EDL, X-SOL) extensor digitorum longus (EDL) and soleus (SOL) muscles of the rat at 35° C. The muscles were then used for biochemical analyses of properties of myosin and actomyosin.

2. The ATPase activities of myosin and actomyosin of X-EDL decreased to the level of those of N-SOL or S-SOL, and the ATPase activities of X-SOL approached those of N-EDL or S-EDL. Of the various ATPase activities, the actin- and Mg2+-activated ATPase activity of myosin and the Mg2+-activated ATPase activity of actomyosin showed the highest degree of correlation with the intrinsic speed of shortening of the muscles.

3. Myosin of normal, self-innervated, and cross-innervated muscles combined with F-actin superprecipitated at rates which were proportional to the speed of muscle contraction.

4. The pH profile curve and the ATP-induced dinitrophenylation reaction revealed that the structure of myosin of X-EDL was altered to that of N-SOL or S-SOL, and the structure of myosin of X-SOL was modified to that of N-EDL or S-EDL.

5. No differences were found in the yield of myosin of normal, self-innervated, and cross-innervated extensor digitorum longus and soleus muscles.

Full text

PDF
455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARANY M., BARANY K., RECKARD T., VOLPE A. MYOSIN OF FAST AND SLOW MUSCLES OF THE RABBIT. Arch Biochem Biophys. 1965 Jan;109:185–191. doi: 10.1016/0003-9861(65)90304-8. [DOI] [PubMed] [Google Scholar]
  2. BARANY M., BARANY K. Studies on "active centers" of L-myosin. Biochim Biophys Acta. 1959 Oct;35:293–309. doi: 10.1016/0006-3002(59)90378-6. [DOI] [PubMed] [Google Scholar]
  3. Buller A. J., Mommaerts W. F., Seraydarian K. Enzymic properties of myosin in fast and slow twitch muscles of the cat following cross-innervation. J Physiol. 1969 Dec;205(3):581–597. doi: 10.1113/jphysiol.1969.sp008984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bárány M., Bailin G., Bárány K. Reaction of myosin with 1-fluoro-2, 4-dinitrobenzene at low ionic strength. J Biol Chem. 1969 Feb 25;244(4):648–657. [PubMed] [Google Scholar]
  6. Bárány M., Bárány K. Adenosine triphosphate-dependent reaction of 1-fluoro-2,4-dinitrobenzene with various myosins. J Biol Chem. 1969 Oct 10;244(19):5206–5212. [PubMed] [Google Scholar]
  7. Bárány M., Conover T. E., Schliselfeld L. H., Gaetjens E., Goffart M. Relation of properties of isolated myosin to those of intact muscles of the cat and sloth. Eur J Biochem. 1967 Sep;2(2):156–164. doi: 10.1111/j.1432-1033.1967.tb00120.x. [DOI] [PubMed] [Google Scholar]
  8. Bárány M., Tucci A. F., Conover T. E. The removal of the bound ADP of F-actin. J Mol Biol. 1966 Aug;19(2):483–502. doi: 10.1016/s0022-2836(66)80018-9. [DOI] [PubMed] [Google Scholar]
  9. CLOSE R. DYNAMIC PROPERTIES OF FAST AND SLOW SKELETAL MUSCLES OF THE RAT DURING DEVELOPMENT. J Physiol. 1964 Sep;173:74–95. doi: 10.1113/jphysiol.1964.sp007444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Close R. Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union. J Physiol. 1969 Oct;204(2):331–346. doi: 10.1113/jphysiol.1969.sp008916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Close R. Effects of cross-union of motor nerves to fast and slow skeletal muscles. Nature. 1965 May 22;206(4986):831–832. doi: 10.1038/206831a0. [DOI] [PubMed] [Google Scholar]
  12. Close R. The relation between intrinsic speed of shortening and duration of the active state of muscle. J Physiol. 1965 Oct;180(3):542–559. doi: 10.1113/jphysiol.1965.sp007716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  14. Samaha F. J., Guth L., Albers R. W. Differences between slow and fast muscle myosin. Adenosine triphosphatase activity and release of associated proteins by p-chloromercuriphenylsulfonate. J Biol Chem. 1970 Jan 25;245(2):219–224. [PubMed] [Google Scholar]
  15. Samaha F. J., Guth L., Albers R. W. The neural regulation of gene expression in the muscle cell. Exp Neurol. 1970 May;27(2):276–282. doi: 10.1016/0014-4886(70)90220-7. [DOI] [PubMed] [Google Scholar]
  16. Sreter F. A., Seidel J. C., Gergely J. Studies on myosin from red and white skeletal muscles of the rabbit. I. Adenosine triphosphatase activity. J Biol Chem. 1966 Dec 25;241(24):5772–5776. [PubMed] [Google Scholar]
  17. WEBER H. H., PORTZEHL H. Muscle contraction and fibrous muscle proteins. Adv Protein Chem. 1952;7:161–252. doi: 10.1016/s0065-3233(08)60019-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES