Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Oct;218(2):337–351. doi: 10.1113/jphysiol.1971.sp009621

The permeation of several materials into the fluids of the rabbit's brain

Hugh Davson, Keasley Welch
PMCID: PMC1331799  PMID: 5124569

Abstract

1. 24Na, 36Cl and 35S thiourea were infused I.V. in rabbits according to schedules designed to yield approximately level activity in plasma for periods up to 5 hr. Cerebrospinal fluid was sampled before ending the experiment by decapitation and the radioactivities in cerebrospinal fluid and in homogenized brain were compared in each case to a time weighted mean value for plasma.

2. The results are considered in terms of a simplified model which specifically acknowledges the continuity of the extracellular and cerebrospinal fluids and thus the coupling between processes which occur at the interfaces bordering those fluids.

3. From the rate constants for exchange across the blood—brain interface that were necessary for simulation of the observed behaviours, permeability coefficients for that interface were estimated for the materials studied and, from experiments of others, for 42K.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERING E. A., Jr, SATO O. HYDROCEPHALUS: CHANGES IN FORMATION AND ABSORPTION OF CEREBROSPINAL FLUID WITHIN THE CEREBRAL VENTRICLES. J Neurosurg. 1963 Dec;20:1050–1063. doi: 10.3171/jns.1963.20.12.1050. [DOI] [PubMed] [Google Scholar]
  2. Bito L. Z., Bradbury M. W., Davson H. Factors affecting the distribution of iodide and bromide in the central nervous system. J Physiol. 1966 Jul;185(2):323–354. doi: 10.1113/jphysiol.1966.sp007989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradbury M. W., Davson H. The transport of potassium between blood, cerebrospinal fluid and brain. J Physiol. 1965 Nov;181(1):151–174. doi: 10.1113/jphysiol.1965.sp007752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradbury M. W., Kleeman C. R. Stability of the potassium content of cerebrospinal fluid and brain. Am J Physiol. 1967 Aug;213(2):519–528. doi: 10.1152/ajplegacy.1967.213.2.519. [DOI] [PubMed] [Google Scholar]
  5. Brightman M. W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol. 1965 Jul;26(1):99–123. doi: 10.1083/jcb.26.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brightman M. W. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965 Sep;117(2):193–219. doi: 10.1002/aja.1001170204. [DOI] [PubMed] [Google Scholar]
  7. Brooks G. F., Koch A., Wong J. Kinetics of sodium transfer from blood to brain of the dog. Am J Physiol. 1970 Mar;218(3):693–702. doi: 10.1152/ajplegacy.1970.218.3.693. [DOI] [PubMed] [Google Scholar]
  8. CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
  9. Cameron I. R., Kleeman C. R. The effect of acute hyperkalaemia on the blood-c.s.f. potential difference. J Physiol. 1970 Apr;207(2):68P–69P. [PubMed] [Google Scholar]
  10. DAVSON H. A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J Physiol. 1955 Jul 28;129(1):111–133. doi: 10.1113/jphysiol.1955.sp005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DAVSON H., LUCK C. P. The effect of acetazoleamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. J Physiol. 1957 Jul 11;137(2):279–293. doi: 10.1113/jphysiol.1957.sp005812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DAVSON H., POLLAY M. The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J Physiol. 1963 Jul;167:247–255. doi: 10.1113/jphysiol.1963.sp007145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DAVSON H. THE CEREBROSPINAL FLUID. Ergeb Physiol. 1963;52:20–72. [PubMed] [Google Scholar]
  14. Davson H., Segal M. B. The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol. 1970 Jul;209(1):131–153. doi: 10.1113/jphysiol.1970.sp009159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HELD D., FENCL V., PAPPENHEIMER J. R. ELECTRICAL POTENTIAL OF CEREBROSPINAL FLUID. J Neurophysiol. 1964 Sep;27:942–959. doi: 10.1152/jn.1964.27.5.942. [DOI] [PubMed] [Google Scholar]
  16. KATZMAN R., LEIDERMAN P. Brain potassium exchange in normal adult and immature rats. Am J Physiol. 1953 Nov;175(2):263–270. doi: 10.1152/ajplegacy.1953.175.2.263. [DOI] [PubMed] [Google Scholar]
  17. KOCH A., WOODBURY D. M. Carbonic anhydrase inhibition and brain electrolyte composition. Am J Physiol. 1960 Feb;198:434–440. doi: 10.1152/ajplegacy.1960.198.2.434. [DOI] [PubMed] [Google Scholar]
  18. KREBS H. A., EGGLESTON L. V., TERNER C. In vitro measurements of the turnover rate of potassium in brain and retina. Biochem J. 1951 May;48(5):530–537. doi: 10.1042/bj0480530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LIERSE W. DIE KAPILLARDICHTE IM WIRBELTIERGEHIRN. Acta Anat (Basel) 1963;54:1–31. [PubMed] [Google Scholar]
  20. OLSEN N. S., RUDOLPH G. G. Transfer of sodium and bromide ions between blood, cerebrospinal fluid and brain tissue. Am J Physiol. 1955 Dec;183(3):427–432. doi: 10.1152/ajplegacy.1955.183.3.427. [DOI] [PubMed] [Google Scholar]
  21. Patlak C. S. Analysis of the distribution of materials within the blood-brain-cerebrospinal fluid system. Bull Math Biophys. 1967 Sep;29(3):513–531. doi: 10.1007/BF02476589. [DOI] [PubMed] [Google Scholar]
  22. Pollay M., Curl F. Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967 Oct;213(4):1031–1038. doi: 10.1152/ajplegacy.1967.213.4.1031. [DOI] [PubMed] [Google Scholar]
  23. REED D. J., WOODBURY D. M., HOLTZER R. I. BRAIN EDEMA, ELECTROLYTES, AND EXTRACELLULAR SPACE. EFFECT OF TRIETHYL TIN OR BRAIN AND SKELETAL MUSCLE. Arch Neurol. 1964 Jun;10:604–616. doi: 10.1001/archneur.1964.00460180070007. [DOI] [PubMed] [Google Scholar]
  24. Stulc J. The entry of Na24 from blood into the brain of mice during 30 minutes after intravenous isotope injection. Life Sci. 1967 Jan 1;6(1):85–95. doi: 10.1016/0024-3205(67)90365-7. [DOI] [PubMed] [Google Scholar]
  25. Stulc J. The permeability of mouse cerebral capillaries to sodium. Life Sci. 1967 Sep 1;6(17):1837–1846. doi: 10.1016/0024-3205(67)90212-3. [DOI] [PubMed] [Google Scholar]
  26. TSCHIRGI R. D., TAYLOR J. L. Slowly changing bioelectric potentials associated with the blood-brain barrier. Am J Physiol. 1958 Oct;195(1):7–22. doi: 10.1152/ajplegacy.1958.195.1.7. [DOI] [PubMed] [Google Scholar]
  27. Welch K. A model for the distribution of materials in the fluids of the central nervous system. Brain Res. 1969 Dec;16(2):453–468. doi: 10.1016/0006-8993(69)90238-8. [DOI] [PubMed] [Google Scholar]
  28. Welch K., Sadler K., Gold G. Volume flow across choroidal ependyma of the rabbit. Am J Physiol. 1966 Feb;210(2):232–236. doi: 10.1152/ajplegacy.1966.210.2.232. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES