Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 Apr;214(2):305–326. doi: 10.1113/jphysiol.1971.sp009434

Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones

R E Burke, L Fedina, A Lundberg
PMCID: PMC1331838  PMID: 5579639

Abstract

1. The reversal potentials of several types of inhibitory post-synaptic potentials (IPSPs) have been studied in cat spinal motoneurones with and without modification of intracellular chloride ion (Cl-) concentration. Single barrel intracellular micropipette electrodes have been used.

2. When studied with potassium citrate filled micropipettes, the reversal potential for IPSPs evoked by stimulation of antagonist group Ia afferents is the same as that for recurrent IPSPs evoked by antidromic stimulation of motoneurone axon collaterals, confirming earlier observations (Araki, Ito & Oscarsson, 1961; Coombs, Eccles & Fatt, 1955).

3. Studied with potassium chloride filled micropipettes. the reversal potential for the group Ia IPSP was found to be different from that for the recurrent IPSP when the amount of Cl- diffusing or iontophoretically injected into the motoneurone was small. The amount of difference in reversal potential varied from cell to cell but when present the group Ia IPSP reversed to a depolarizing potential more readily than the recurrent IPSP in all cases.

4. Interaction between recurrent IPSPs and monosynaptic excitatory post-synaptic potentials (EPSPs) was also studied and the amount of non-linearity of potential summation was measured.

5. The results are consistent with the hypothesis that the terminations of Renshaw cells responsible for the recurrent IPSP are located largely on the proximal dendrites of motoneurones, while the terminations of the interneurones generating the group Ia IPSP appear to be closer to or on the cell somata.

Full text

PDF
305

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., ITO M., OSCARSSON O. Anion permeability of the synaptic and non-synaptic motoneurone membrane. J Physiol. 1961 Dec;159:410–435. doi: 10.1113/jphysiol.1961.sp006818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARAKI T., TERZUOLO C. A. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J Neurophysiol. 1962 Nov;25:772–789. doi: 10.1152/jn.1962.25.6.772. [DOI] [PubMed] [Google Scholar]
  3. Andén N. E., Jukes M. G., Lundberg A., Vyklický L. The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol Scand. 1966 Jul-Aug;67(3):373–386. doi: 10.1111/j.1748-1716.1966.tb03324.x. [DOI] [PubMed] [Google Scholar]
  4. Burke R. E. Composite nature of the monosynaptic excitatory postsynaptic potential. J Neurophysiol. 1967 Sep;30(5):1114–1137. doi: 10.1152/jn.1967.30.5.1114. [DOI] [PubMed] [Google Scholar]
  5. COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CURTIS D. R., ECCLES J. C. The time courses of excitatory and inhibitory synaptic actions. J Physiol. 1959 Mar 12;145(3):529–546. doi: 10.1113/jphysiol.1959.sp006159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond J., Huxley A. F. The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurones: an analysis of dendritic remote inhibition. J Physiol. 1968 Feb;194(3):669–723. doi: 10.1113/jphysiol.1968.sp008432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ECCLES J. C., ECCLES R. M., LUNDBERG A. The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol. 1957 Jun 18;137(1):22–50. doi: 10.1113/jphysiol.1957.sp005794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ECCLES J. C., FATT P., KOKETSU K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol. 1954 Dec 10;126(3):524–562. doi: 10.1113/jphysiol.1954.sp005226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ECCLES J., ECCLES R. M., ITO M. EFFECTS PRODUCED ON INHIBITORY POSTSYNAPTIC POTENTIALS BY THE COUPLED INJECTIONS OF CATIONS AND ANIONS INTO MOTONEURONS. Proc R Soc Lond B Biol Sci. 1964 May 19;160:197–210. doi: 10.1098/rspb.1964.0036. [DOI] [PubMed] [Google Scholar]
  11. ECCLES R. M., LUNDBERG A. Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J Physiol. 1958 Dec 4;144(2):271–298. doi: 10.1113/jphysiol.1958.sp006101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FADIGA E., BROOKHART J. M. Monosynaptic activation of different portions of the motor neuron membrane. Am J Physiol. 1960 Apr;198:693–703. doi: 10.1152/ajplegacy.1960.198.4.693. [DOI] [PubMed] [Google Scholar]
  13. Jankowska E., Lund S., Lundberg A., Pompeiano O. Inhibitory effects evoked through ventral reticulospinal pathways. Arch Ital Biol. 1968 May;106(2):124–140. [PubMed] [Google Scholar]
  14. Kidokoro Y., Kubota K., Shuto S., Sumino R. Reflex organization of cat masticatory muscles. J Neurophysiol. 1968 Sep;31(5):695–708. doi: 10.1152/jn.1968.31.5.695. [DOI] [PubMed] [Google Scholar]
  15. Kuno M., Miyahara J. T. Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J Physiol. 1969 Apr;201(2):465–477. doi: 10.1113/jphysiol.1969.sp008767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LLINAS R., TERZUOLO C. A. MECHANISMS OF SUPRASPINAL ACTIONS UPON SPINAL CORD ACTIVITIES. RETICULAR INHIBITORY MECHANISMS UPON FLEXOR MOTONEURONS. J Neurophysiol. 1965 Mar;28:413–422. doi: 10.1152/jn.1965.28.2.413. [DOI] [PubMed] [Google Scholar]
  17. Lund S., Pompeiano O. Monosynaptic excitation of alpha motoneurones from supraspinal structures in the cat. Acta Physiol Scand. 1968 May-Jun;73(1):1–21. doi: 10.1111/j.1748-1716.1968.tb04075.x. [DOI] [PubMed] [Google Scholar]
  18. Rall W., Burke R. E., Smith T. G., Nelson P. G., Frank K. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol. 1967 Sep;30(5):1169–1193. doi: 10.1152/jn.1967.30.5.1169. [DOI] [PubMed] [Google Scholar]
  19. Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
  20. Smith T. G., Wuerker R. B., Frank K. Membrane impedance changes during synaptic transmission in cat spinal motoneurons. J Neurophysiol. 1967 Sep;30(5):1072–1096. doi: 10.1152/jn.1967.30.5.1072. [DOI] [PubMed] [Google Scholar]
  21. Tsukahara N., Kosaka K. The mode of cerebral excitation of red nucleus neurons. Exp Brain Res. 1968;5(2):102–117. doi: 10.1007/BF00238700. [DOI] [PubMed] [Google Scholar]
  22. WILSON V. J., BURGESS P. R. Disinhibition in the cat spinal cord. J Neurophysiol. 1962 May;25:392–404. doi: 10.1152/jn.1962.25.3.392. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES