Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445

The control by internal calcium of membrane permeability to sodium and potassium

P J Romero, R Whittam
PMCID: PMC1331851  PMID: 4996367

Abstract

1. A study has been made of the relationship between the concentration of internal calcium and the permeability of human red cell membranes to sodium and potassium.

2. Fresh red cells contain very little calcium, but after being depleted of ATP by ageing they took up calcium from Ringer solution. The entry was unaffected by external sodium and potassium but was markedly pH dependent. When supplied with energy, calcium-loaded cells actively extruded calcium by a saturable process which was also unaffected by the distribution of sodium and potassium across the membranes. The activity of the calcium pump was sufficient to maintain the low internal concentration found under physiological conditions.

3. Raising internal calcium in metabolically poor cells caused a loss of cell potassium which was greater than the concomitant sodium gain. These changes were reversed when ATP was supplied. External calcium had no effect. The increase in permeability to sodium and potassium was enhanced by the simultaneous addition of fluoride, and, even more so, of iodoacetate. These inhibitors had no effect on membrane permeability unless calcium was also present. Inosine potentiated the action of fluoride and iodoacetate in causing potassium loss, by allowing more calcium to enter the cells.

4. The results suggest that the permeability of human red cell membranes to sodium and potassium is regulated by internal calcium, which in turn is controlled by a calcium pump that utilizes ATP.

Full text

PDF
481

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARVALHO A. P., SANUI H., PACE N. CALCIUM AND MAGNESIUM BINDING PROPERTIES OF CELL MEMBRANE MATERIALS. J Cell Physiol. 1963 Dec;62:311–317. doi: 10.1002/jcp.1030620311. [DOI] [PubMed] [Google Scholar]
  2. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DUNKER E., PASSOW H. Verteilung von Anionen and Kationen bei Fluoridvergiftung menschlicher Erythrocyten. Pflugers Arch. 1950;252(6):542–550. doi: 10.1007/BF00463531. [DOI] [PubMed] [Google Scholar]
  4. ECKEL R. E. Potassium exchange in human erythrocytes. II. The division of cell potassium into two fractions during incubation with 0.025 M NaF. J Cell Physiol. 1958 Feb;51(1):109–132. doi: 10.1002/jcp.1030510107. [DOI] [PubMed] [Google Scholar]
  5. Epstein F. H., Whittam R. The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity. Biochem J. 1966 Apr;99(1):232–238. doi: 10.1042/bj0990232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  7. GARDOS G. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1959;15(2):121–125. [PubMed] [Google Scholar]
  8. GENT W. L., TROUNCE J. R., WALSER M. THE BINDING OF CALCIUM ION BY THE HUMAN ERYTHROCYTE MEMBRANE. Arch Biochem Biophys. 1964 Jun;105:582–589. doi: 10.1016/0003-9861(64)90054-2. [DOI] [PubMed] [Google Scholar]
  9. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GREEN J. W., PARPART A. K. The effect of metabolic poisons on potassium loss from rabbit red cells. J Cell Physiol. 1953 Oct;42(2):191–202. doi: 10.1002/jcp.1030420204. [DOI] [PubMed] [Google Scholar]
  11. HOFFMAN J. F. Cation transport and structure of the red-cell plasma membrane. Circulation. 1962 Nov;26:1202–1213. doi: 10.1161/01.cir.26.5.1201. [DOI] [PubMed] [Google Scholar]
  12. HOFFMAN J. F., TOSTESON D. C., WHITTAM R. Retention of potassium by human erythrocyte ghosts. Nature. 1960 Jan 16;185:186–187. doi: 10.1038/185186a0. [DOI] [PubMed] [Google Scholar]
  13. Harrison D. G., Long C. The calcium content of human erythrocytes. J Physiol. 1968 Dec;199(2):367–381. doi: 10.1113/jphysiol.1968.sp008658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
  15. Lee K. S., Shin B. C. Studies on the active transport of calcium in human red cells. J Gen Physiol. 1969 Dec;54(6):713–729. doi: 10.1085/jgp.54.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lepke S., Passow H. Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane. J Gen Physiol. 1968 May 1;51(5):365–372. [PMC free article] [PubMed] [Google Scholar]
  17. Lew V. L. Effect of intracellular calcium on the potassium permeability of human red cells. J Physiol. 1970 Feb;206(2):35P–36P. [PubMed] [Google Scholar]
  18. Lubowitz H., Whittam R. Ion movements in human red cells independent of the sodium pump. J Physiol. 1969 May;202(1):111–131. doi: 10.1113/jphysiol.1969.sp008798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MAIZELS M. Factors in the active transport of cations. J Physiol. 1951 Jan;112(1-2):59–83. doi: 10.1113/jphysiol.1951.sp004509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. NATHAN D. G., OSKI F. A., SIDEL V. W., DIAMOND L. K. EXTREME HEMOLYSIS AND RED-CELL DISTORTION IN ERYTHROCYTE PYRUVATE KINASE DEFICIENCY. II. MEASUREMENTS OF ERYTHROCYTE GLUCOSE CONSUMPTION, POTASSIUM FLUX AND ADENOSINE TRIPHOSPHATE STABILITY. N Engl J Med. 1965 Jan 21;272:118–123. doi: 10.1056/NEJM196501212720302. [DOI] [PubMed] [Google Scholar]
  21. Olson E. J., Cazort R. J. Active calcium and strontium transport in human erythrocyte ghosts. J Gen Physiol. 1969 Mar;53(3):311–322. doi: 10.1085/jgp.53.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PONDER E. Volume changes, ion exchanges, and fragilities of human red cells in solutions of the chlorides of the alkaline earths. J Gen Physiol. 1953 Jul;36(6):767–775. doi: 10.1085/jgp.36.6.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  24. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WILBRANDT W., KOLLER H. Die Calciumwirkung am Froschherzen als Funktion des Ionengleichgewichts zwischen Zellmembran und Umgebung. Helv Physiol Pharmacol Acta. 1948;6(2):208–221. [PubMed] [Google Scholar]
  26. Wallach S., Reizenstein D. L., Bellavia J. V. The cellular transport of calcium in rat liver. J Gen Physiol. 1966 Mar;49(4):743–762. doi: 10.1085/jgp.49.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whittam R. Control of membrane permeability to potassium in red blood cells. Nature. 1968 Aug 10;219(5154):610–610. doi: 10.1038/219610a0. [DOI] [PubMed] [Google Scholar]
  29. Whittam R., Wheeler K. P. Transport across cell membranes. Annu Rev Physiol. 1970;32:21–60. doi: 10.1146/annurev.ph.32.030170.000321. [DOI] [PubMed] [Google Scholar]
  30. Whittam R., Wiley J. S. Potassium transport and nucleoside metabolism in human red cells. J Physiol. 1967 Aug;191(3):633–652. doi: 10.1113/jphysiol.1967.sp008272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES