Abstract
1. A modification of a previously published method for the disruption of the T-tubules of frog skeletal muscle is described. The modification permits the disruption of the T-tubules without the decline in resting potentials which was reported previously.
2. The method for the disruption of the T-tubules involves the washout of glycerol following loading in a 400 mM glycerol Ringer solution. The modification consists of elevating the concentration of divalent cations in the Ringer used for glycerol washout.
3. The optimum concentrations are 5 mM-Ca2+ and 5 mM-Mg2+ added as their chloride salts. Neither 10 mM-Ca2+ nor 10 mM-Mg2+ are as effective as the combination of each at 5 mM. Other concentrations gave less satisfactory results.
4. The use of the modified technique provides a preparation which maintains 85-90 mV resting potentials for up to 6 or 8 hr but which will not contract in response to membrane depolarization.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eisenberg B., Eisenberg R. S. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. J Cell Biol. 1968 Nov;39(2):451–467. doi: 10.1083/jcb.39.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. S., Gage P. W. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J Gen Physiol. 1969 Mar;53(3):279–297. doi: 10.1085/jgp.53.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., Eisenberg R. S. Action potentials, afterpotentials, and excitation-contraction coupling in frog sartorius fibers without transverse tubules. J Gen Physiol. 1969 Mar;53(3):298–310. doi: 10.1085/jgp.53.3.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell J. N. A lesion of the transverse tubules of skeletal muscle. J Physiol. 1969 May;201(3):515–533. doi: 10.1113/jphysiol.1969.sp008770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ildefonse M., Pager J., Rougier O. Analyse des propriétés de rectification de la fibre musculaire squelettique rapide après traitement au glycérol. C R Acad Sci Hebd Seances Acad Sci D. 1969 Jun 3;268(23):2783–2786. [PubMed] [Google Scholar]
- Krolenko S. A., Adamian S. Ia. Pronitsaemost' myshechnykh volokon dlia neélektrolitov. Tsitologiia. 1967 Feb;9(2):185–192. [PubMed] [Google Scholar]
- Krolenko S. A., Adamian S. Ia, Shvinka N. E. Vakuolizatsiia skeletnykh myshechnykh volokon. I. Vakuolizatsiia volokon posle vykhoda iz nikh riada nizkomolekuliarnykh neèlektrolitov. Tsitologiia. 1967 Nov;9(11):1346–1353. [PubMed] [Google Scholar]
- Krolenko S. A. Changes in the T-system of muscle fibres under the influence of influx and efflux of glycerol. Nature. 1969 Mar 8;221(5184):966–968. doi: 10.1038/221966a0. [DOI] [PubMed] [Google Scholar]
- Nakajima S., Nakajima Y., Peachey L. D. Speed of repolarization and morphology of glycerol-treated muscle fibres. J Physiol. 1969 Feb;200(2):115P–116P. [PubMed] [Google Scholar]
- Stefani E., Steinbach A. Persistence of excitation contraction coupling in "slow" muscle fibres after a treatment that destroys transverse tubules in "twitch" fibres. Nature. 1968 May 18;218(5142):681–682. doi: 10.1038/218681a0. [DOI] [PubMed] [Google Scholar]
- Yamada K. The increase in the rate of heat production of frog's skeletal muscle caused by hypertonic solutions. J Physiol. 1970 May;208(1):49–64. doi: 10.1113/jphysiol.1970.sp009105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Kloot W. The steps between depolarization and the increase in the respiration of frog skeletal muscle. J Physiol. 1969 Oct;204(3):551–569. doi: 10.1113/jphysiol.1969.sp008931. [DOI] [PMC free article] [PubMed] [Google Scholar]